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Chapter 1

INTRODUCTION

Materials interact with electromagnetic fields in a varfety of ways.
Some electromagnetic interaction phenomena, such as photoelasticity and
piezoelectricity, have found wide application in experimental mechanics
and in industry. But it is only recently that a corresponding theory of
sufficient generality has been developed for electromaanetfc interaction
phenomena of elastic solids. This field is qenerally called electro-

magnetoelasticity,

Special branches of the electromaanetoelasticity, such as piezo-
electricity, have been well developed and apnlied widely in the electronic
industry, C(ther branches of the aeneral theory remain unnoticed and
seldomly interest structural mechanicfans., However, recent developments
in the high energy industry are araduvally changing this situation.

High energy devices such as fusion reactors, superconductive enerqgy
storage devices, MHD generators, and maanetically levitated vehicles are
all subjected to strong electromagnetic fields. The desian of these
devices calls for an understanding of the nature of the electromagnetic
forces and the interactfions between the fields and the structure. Thus,
although sti11 relatively unnoticed, electromagnetoelasticity {s gradual-
ly emerging as a new field-structure {nteraction theory for structural
mechanicians,

The electromagnetoelastic materials of interest to structural

mechanicians are conductina metals and superconducting materials. Both




types are used as major structural materials in the high eneray industry
and sometimes they appear in composite form. The electromagnetic
phenomenon in such materfals is basically a magnetic one. The inter-

action theory between the field and the elastic body is therefore called

magnetoelasticity.
Scattered studies of magnetoelastfc structural problems exist {n the
u literature. Knowledge of this theory {s still restricted to a relatively
f small group of specfalists., In no small measure, this fact 1s due to the

complexity of the subject, requirina knowledae of mechanics, electromagnetic
theory, and thermodynamics. Even for relatively simple materials 1{ke non-

ferrous conductors, the interactions among these three fields are by no

means trivial,

This chapter gives a brief introductfon to the main features of
magnetoelastic structural problems. Section 1.1 describes the multi- H
disciplinary nature of the theory of magnetoelasticity for nonferrous
conductors, Section 1.2 introduces the plate as a special structural form
in the general theory and describes the modelling approach of maaneto~-

’2§ elastic plate problems used in this thesis. Sectfon 1,3 presents the

organization and an overview of the later Chapters.

1.1 The Multidisciplinary Nature of Magnetoelasticity

Magnetoelasticity for nonferrous conductors encompasses three differ-

ent fields: elasticity, electrodynamics, and thermodynamics., The cou-

pling of these three fields 1s shown schematically in Figure 1.1 and

‘ occurs through the field eaquations, constitutive eouations, and boundary

conditions, The quantification of the mutual interactions and their

effects on the behavior of the elastic structure §s the purpose of this
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study.

Detafls of the theory of magnetoelasticity will be presented in
Chapter Two. However, from the simple fiqure here, one notes that the
electric current interacts with the magnetic field to create a magnetic
body force on the conducting structure. The deformation and motion of
the structure then perturb and change the electromagnetic field. The
electric current aenerates Joule heating which diffuses through the
conductor body and creates thermal stresses. The thermoelastic effects
further change the motion of the conductor structure and affect the
electromagnetic fields, Ourina the whole process, the distributions of
the magnetic body force and the electric heatina depend on the varifation
of the magnetfic field and all other field variables. The resulting body
force distribution can be markedly different from the gravitational body
force more familiar to structural mechanicians and may cause deformation
gradients inside the structure that differ from the conventional kin-
ematic simplifying assumptions of a particular structural form, Further-
more, coupled problems are three-dimensional as the magnet1c fields can
permeate through both the structure and the free space surrounding {t.
The coupled problem is also a dynamic one since the interactions come
through the motion of the conductor and the time variation of the elec-
tric and thermal fields inside the conductor body. The solution of any
but the simplest structural conffaurations is difficult, and one generally

has to resort to numerical means,

1.2 Modelling of Magnetoelastic Plate Problems

A11 the above mentioned features of magnetoelasticity may be found

for the problem of a conducting thin plate fn a time-varying maanetic




field. But here the thinness of the plate may cause the electromagnetic

and mechanfcal field variables to have certain restricted variations across
the thickness. Simplifying assumptions regardina these variations may then
be made to model the problem in a form more amenable to analysfis, The
study of the interactions between time-varying magnetic fields and the
motion and deformatfon of thin conductor plates is the topic of this report.
The thermoelastic effects are not considered in this work, The modelling
approach is described in the following paraaraphs,

The magnetoelastic problem of a thin nonferrous conductor fs basically
an electromagnetic induction problem coupled with a problem of dynamic
elasticity, For structural problems, one considers low frequency theories
in both subsystems, When the frequency of the electromagnetic field is
sufficiently low, the penetration depth of the magnetic field into the
conductor is large compared to the thickness of the plate, and the {induced
current (eddy current) is approximately uniform across the thickness and
flows parallel to the mid-surface. One can therefore assume that
(1) the normal to the mid-surface remains unstretched and normal to the

deflected mid-surface of the plate,

(2) the eddy current density is constant across the thickness of the
plate, and, from this assumption,
(3) the normal component of the induced maanetic field is constant

across the thickness of the plate,

The induced eddy current flow is therefore perpendicular to the normal and
rotates with the normal when the plate is vibrating,

With these three basic assumptions, and a few others introduced in
Section 2.3.2, the plate problem {s modelled as an eddy current problem

on a moving conducting sheet coupled to a vibration problem of the thin




elastic plate. The equations governing these two subproblems will all be

referred to the mid-surface of the plate and coupled through velocity and
the calculated magnetic force,

To achieve such a two-dimensional model, the current density is
chosen as the primary variable in the {induction problem, A stream function
method §s introduced to reduce the vector eouatfon into a scalar equation.
The Biot-Savart law is used to calculate the normal component of the in-
duced magnetic field, which is basically the stream function for the in-
duced current density. The singular nature of the Biot-Savart law is
avoided at the mid-surface of the plate by transforming the volume integra-
tfon into a surface integration. The expression obtained is then substi-
tuted into Faraday's law to obtain the desired aoverning equation,

The magnetic force calculated will have components normal and
tangential to the plate, The equations of motion of the plate will

contain the effects of both components.

1.3 Thesis Overview

The theoretical side of this thesis is treated in Chapter Two. To
provide a proper backaround to the discussion of the stream function method,
the theory of magnetoelasticfty for nonferrous conducting materials is
summarized, together with the 1inearization procedure of the various electro-
magnetic and mechanical field relations, The stream function method is then
discussed 1n detail, Varifous assumptions used are examined and the electro-
magnetic field problem reduced to a single intearo-differential eauation
for the stream function, A literature survey of magnetoelastic plate

problems fs also gfven,




Chapter Three 1s devoted to the eddy current calculation on riaid,

stationary conducting plates since this subproblem 1s not trivial and

is in ftself a significant aspect of electromaanetic field computation,
The aoverning equations for eddy currents derfved in Chapter Two are
applied to finfte (two-dimensfonal) and infinftely lona (one-dimensional)
plates subjected to various exciting maagnetic fields, The numerical
results are compared to some experimental data obtained by using infra-
red sensing techniques, The finite element method {s used to solve the
integro-differential equation for the stream function.

Chapter Four is concerned with the linear vibration of infinitely
Tong magnetoelastic plates, Small deformation linearizations are
employed, and various types of coupling investigated. Forced vibrations
induced by transient maanetic fields generated by pulsed currents in
nearby coils are studied. A finite element staagered transfent analysis
procedure is used for the coupled set of equations, Parameter studies are
presented to explore the effects of the different time characteristics of
the magnetic and mechanical subsystems, Some comparisons of the calcula-
tions with experimental results are given,

Chapter Five discusses the nonlinear vibration of infinitely long
magnetoelastic plates. The formulation and algorithm for solution are
presented based on the linearized equatfons for the updated, fncremental
analysis procedure. A two-dimensional nonlinear beam element is proposed
for the geometrically nonlinear problems. Some limited results for the
uncoupled, static nonlinear elastic problems are presented, and difficul-
ties i{n the convergence of solutions for the nonlinear dynamic cases are
discussed, Some suggestions for the {mprovement of the numerical

technique are also given.




Conclusions on the results of the present study on magnetoelastic
plates are drawn in the last Chapter, together with some sugaestions for

further research in this area.




(hapter 2

GENERAL THEORY

Several features of the theory of electromaanetic interactions in
elastic solids make 1t unique in continuum mechanics. In the first place,
there is no generally aareed upon interpretation of some of the electric
and maagnetic vectors in continuous bodies, These differina interpretations,
together with the fact that the laws of classical mechanics are Galilean-
invarfant while the Maxwell equations are Lorentz-invariant, aive rise to
a variety of formulations of electrodynamics in a movina medium. In the
second place, the separation of total contact force into mechanical and
electromagnetic parts {s not unique, The definitions of the stress tensor
and the electromaanetic body force thus become mutually dependent,

Finally, for materials such as piezoelectric solids, the interaction

energy is linear in strafn, If the stress-strain relations are to be
obtained to the first order in the strains by differentifation of an eneray
function, then that enerqy function must be correct to the second order
(Ref, 1), Finite-strain theory with all the complications of the associated
two-point tensors must then be used in some problems, even when the defor-
mation 1s small, Such features, as the three mentioned, make the general
theory much more complicated than a simple superposition of the Maxwell
equations and the theory of Tinear elasticity.

Toupin (Refs. 2,3) was the first one to use finite-strafn theory to
clarify some problems in the theory of interaction of an electrostatic

field with a perfectly elastic dielectric. Tiersten (Refs. 4,5) then




developed a simflar theorv for the deformation of maanetically saturated

insulators, A riaorous treatment of the maanetoelastic interactions has
been aiven by Brown in his monoaraph (Ref. 1), The treatment is mainly
for saturated non-dissipative, and non-conductive materials under static
magnetic fields., The model of electrodynamic theory used by Toupin and
Tiersten is also critfcized in Brown's work, The interest in all these
studfes has been toward an understandina of the phenomena of electro-
striction and maanetostriction as physical problems.

Electrodynamics in a movina media has lona been a controversial
subject. Pao (Ref. 6) has afven a detailed comparison of four different
theories in the l{terature: the Minkowsk{ formulation, the Lorentz
formulation, the statistical formulation, and the Chu formulation, Field-
matter interaction theorfes for stationary and movina medfa based on these
different models are also presented, Discussed also are the constitutive
equatfions and boundary conditions, It {s shown that under approoriate
transformations of the different definftions of the electric and maanetic
vectors, the four models can be made equivalent to each other, However,
the expressions for the electromagnetic body force, bodv couple, and energy
supply for polarizable maanetizable movinao media based on these models
differ from each other. For nonferrous metals, however, the differences
in these expressions vanish and the results are also much simpler,

Field-matter interaction theory is a specfal branch of continuum
mechanics., The treatment of this subject in the 1{terature basically
follows two different procedures, The stress method uses the stress concept
and the expression for the electromaanetic forces on a material volume,

The enerqy method uses a stored eneray functfon and a varfational principle.

Parallels exist between the two procedures, and in theory they should yield
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equivalent models, However, since it 1s impossible to measure the field
variables inside the material, some assumptions always have to be made

in either method. Several self-consistent theorfes exist in the litera-
ture, Some classical monographs and articles on this subfect include Brown
(Ref. 1), Penfield and Hans (Ref, 7), and Truesdell and Toupin (Ref. 8).
Some more recent ones include Parkus (Refs, 9, 10, 11) Hutter and

Van de Ven (Ref, 12), Alblas (Ref, 13), and Eringen (Ref, 14), 1In each

of these, extensive references to other papers may be found,

Beside the interest in pure theoretical studies, there has been
research work on this subject toward its practical applicatfons in diverse
fields such as ageophysics, optics, acoustics, solid-state devices, and so
on, Knopoff (Ref. 15), Wilson (Ref. 16), Kaliski (Ref. 17), and Dunkin
and Eringen (Ref, 18) studied the effects of maanetic fields on elastic
wave propogation, The maanetoelasticity theory they use is a simple
combination of Maxwell equatfons and the equations of linear elasticity,
The influence of the electromagnetic field on the strain occurs solely by
means of Lorentz forces appearing in the equations of motion, The motion
of the material affects the electromagnetic field only throuah the velocity
of the particles in Ohm's law. Electromaanetic wave propodation usually
is not considered. The use of quasfi-static theory further simplifies the
field problem, Many papers of this type have been reviewed by Paria
(Ref. 19),

On enaineering aspects, Montgomery (Ref, 20) and Brechna (Ref, 21)
discussed stress analysis in maanet desian. Woodson and Melcher (Ref, 22)
treated electromechanical problems in electric machines and other devices.
Melcher's new book (Ref, 23) directs toward electromagnetic field-continuum

interactions. The treatment in this book fs general, but the problems




discussed are mainly fluid flow ones. Many other books on electric

i machines and energy conversion also include electromechanical problems.
Quasi-static theory is aenerally used for analysis., The circuit analogy
provides a convenient tool in such a case. Many of the studies are for
the uncoupled cases only, where the knowledge of the magnetic field
determines the body force and hence the motion and deformation of the

solid. Becker and Pillsbury (Ref. 24) is one of the few cases where the

mutual coupling is taken into account,

Moon's recent artfcle (Ref, 25) provides a broad survey of possible
engineering applications of maaneto-solid mechanics, Many problems
discussed find applications in high energy technoloay. Desian of fusion
reactors, superconductive enerqy storage devices, MHD generators, etc.,
all involve considerations of strong magnetic forces imposed on the
structural components. Moon and his co-works (Refs, 26, 27) have studied
the stability and vibrations of superconducting maanet systems extensively.
Miya, et al (Ref, 28) studied conductive cylindrical shells in pulsed
axisymmetrical maanetic fields. A new monoaraph edited by Moon (Ref, 29)
has addressed the mechanics of superconducting structures. Papers pub-
lished in the nuclear enafneering T{terature on the structural considera-
tions of the devices are also numerous. However, apart from the few
studies already cited, they are all limited to the uncoupled cases. The
mutual interaction between the field and the response of the structure
has received little attention.

P The purpose of this report s to study the mutual interactions between
the time-varying magnetic field and the induced motion of thin, nonferrous

conducting plates on a rigorous conttinuum mechanic basis. The dynamics of

the coupled magneto-mechanical system is emphasized. The eddy current I




problem and the deformation-dependent nature of the magnetic force are

given special attention, Both linear and nonlinear deformations of the
conducting plate are considered,

In this chapter the theory of maanetoelastic plates and the formula-
tion approach used in this thesis are presented. Sectfon 2.1 summarizes
the theory of magnetoelasticity for nonferrous conductors based on the

Lorentz force concept, The Eulerfan descriptfion is used. Section 2.2

discusses the linearization procedure of the field equations, The
description of the coupled system is then referred to a known configura-
tion of the conductor body, The approximation of the procedure is also
discussed, Section 2,3 addresses thin nonferrous conductina plates. A
stream function method for eddy current calculation is introduced, The
problem is then modelled as an eddy current problem on a movina conducting
sheet coupled to a vibration problem of a thin plate subjected to deforma-
tion-dependent load. The various couplinag effects and the maanetfc body
force in the plate are discussed. A state-of-the-art survevy of maaneto-

elastic plate problems is also afven,

2.1 Magnetoelasticity for Nonferrous Conductina Materials

The material treated in this study is assumed to be homoceneous,
isotropic, and possessinag finite conductivity. Polarization and magnetiza-
tion are not considered, Furthermore, no thermal effects are included.

The theory presented below is basically a theory of the electrodynamics of
a moving medfa coupled to the theory of nonlinear elasticity, The couplina
; effects come from the Lorentz force, the modification of the electromagnetic

field relations by the velocity of the material, and the boundary conditions.

The presentation follows that of Hutter and Pao (Ref,30), Details of some
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derivations are omitted when the reader may be referred to this and other
2 cited papers.

Consider first the kinematics of a material body in three-dimensional
space. The position of a particle in the reference (materfal) confiaquration
- will be denoted by X, while its position in the present (spatfal) confiqura-
tion by .8 Both X and x are referred to a common Cartesian coordinate
system fixed in space, as shown in Fiaqure 2,1, The component of X and of
all other vector and tensor quantities in the reference confiauration are
3 indicated by Greek subscripts (a, 8 = 1,2,3), and those in the present
confiquration by Latin subscripts (1, § = 1,2,3). The motion and deforma-

tion of the body are then described by

X=X (X,t) or x;=x(X,t), f,a=1,23 (2.1)

The particle velocity and acceleration are

veEgE 2 () = 3 x (Xt (2.2a)
v = ¢ x (X,8) =2 vevy.y (2.2b)
A -;;2- 4" ‘\:, —a-{.'\r N 2" ‘
respectively. Introduce the displacement vector u with components
uy =Xy - 8y Xa, or u =8 x;- X, (2.3)
The particle velocity can then be calculated by
; Vel utvo.u (2.4)
! A, 3t & LY A

The deformation may be measured by either the Green's strain tensor in

, the coordinate system Xu

EaB' Y (ua’B + Ug.a + U, o uy’s) (2.5a)

g
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or the Almansi's strain tensor in the coordinate system Xy
ey = % (ui,j Uy Yy uk,j) (2.5b)
The balance laws will be aprplied to auantities measured in the coordinates

X for the present confiauration only,

2.1.1 Electromaanetic Field Eouvations, Constitutive Relations, and
L Boundary Conditions

The electromaagnetic field equations for movina media may be derived

from the following postulated qlobal laws (Pef. 6).

Gauss - Faraday : ‘s B-ds=0 (2.6a)
Faraday I R R A R (2.6b)
Gauss - Coulomb : ¢ f . dS=/ qdV (2.6¢)

Ampere - Maxwell

‘Cﬁe-d£=%€!sg-d§+fs,le.d§ (2.6d)

In addition, there is the law of conservation of charce
§.0 -ds+ S s adv=0 (2.6e)
s Re Ry ’

In the above, Q ifs the maanetic induction, Q is the electric displacement,
the Ee and ne are the effective electric field and maanetic field, respec-
tively, and Qe is the effective current, q is the free charae density.

A1)l integrations are taken over material volume V, material surface S, or
material circuit C, which vary with time. The time differentiations should

be carried out by applyina the transport theorem
i, eV =s [ 4. ()] ay (2.7a)

Sl A-ds=r p-ds (2.70)




inwhich Az3ppsyv-peox(pxy) (2.7¢)

For nonferrous metals with qood (but finite) conductivity, the free
charaqe density a can often be dropped., Also, since the freauencies related
to vibrations and mechanical waves are much smaller than the freouencies of
electromagnetic waves with the same wave lenath, one can reaard the electro-
magnetic fields as quasistatic when investicatina the dynamic response of
the conductor structures. Mathematically it means that the electric dis-
placement p = 0 and %T'Q = 0, The field eaquations so derived will be of
the diffusion type rather than the wave type. All the electromaanetic
variables inside the material are then treated as convected auantities.

The electromaanetic field equations in Tocal form may be obtained by
substitution of Egs. (2.6) into Eas. (2.7) and application of the divergence
and Stokes theorems to the movina volume V and surface S. With the above

simplifications, Eas. (2.6) become

v.§=0 (2.8a)
Ver=-g=-%fE-Vx(Exx) (2.8b)

p=o0 (2.8¢)
v xfe = ile (2.8d)
v - Qe =0 (2.8e)

The B, D, Qe, Ee' and J, in Eas. (2.6) are fields in the movina body
as measured by an observer following each material particle. After the
application of the transport theorem, the B and D in Eas, (2.8) are those
in the moving body measured by an observer in a reference frame fixed in
space. The effective fields ﬂe and Ee can also be expressed in terms of

the corresponding fixed-frame auantities }{ and f, respectively. The

expressions are different in various formulations for general materials,




However, for nonferrous metals the same results may be obtained and are

Fe = E*r xR He = -xxefk (2.9a)

The effective current density measured by an observer moving with the
charced particle is

Qegg_qx (2.9b)

In the usual case of quasistatic field problems, no free charae can exist
inside the conductor and one has Qe = 4. In problems that involve conduc-
tors with slits or cracks, free charce may be accumulated on the two sides
of the narrow openina, and electric arcina may occur when the voltaae
across the openina becomes too high. In such problems, the effect of the
free charge cannot be nealected, In the present study, however, free
charae accumulation and electric arcino are not considered, and thus the
relation Qe = g is assumed,

Note also that since p = ¢ f, the quasistatic approximation effective-
1y implies that the permittivity ¢ = 0 and hence Ee = ﬂ.

The electromaanetic constitutive relations in this study are 1imited
to the classical linear relations for homogeneous, isotropic materials,
For sTowly moving media these relations are invartant with respect to the
transformation of reference frames, Namely,

R=ck B=sts i=of (2.10a)
jn the fixed frame, and

P=c¢ Ee’ B = une, ’Le = °£e (2.10b)

in the movina frame. In the above u is the magnetic permeability and o

the electric conductivity of the material, In view of Eas. (2.9), one has
R=c(E+y =R (2.M12)
B=uw(-xxp (2.110)
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=0 (E+yxR) (2.11¢)

Again, because of the quasi-static approximation, only Fa, (2.11c) and
Eq. (2.11b) with Q = 0 will be needed. For nonferrous metals u can be
replaced by Yo of the free space without introducina any sianificant error,
The electromaanetic boundary conditions may be derived bv applyina
the alobal laws, Eas. (2.6), to volumes and surfaces which contain sinqular
surfaces and lines across which the field auantities may not be continuous
or may suffer a jump. The transport theorem, Fas, (2.7), in such cases
should be modified to account for the discontinuities of the field
quantities. The modified transport theorem is then anplied to alobal laws
for the small volume or "pillbox" and for the circuit shown in Fia, 2,2.
By takina the limits of vanishina volume for the pillbox and vanishina
enclosed area for the circuit, one may derive the jump conditions. For

nonferrous metals with finite conductivity in a aquasi-static field, they

are
p-T B D=0 (2.12a)
px0 E+y=xp D=0 (2.12b)
pxC K J=0 (2.12¢)
pe0 ) D=p-Molf+y=p)I=0 (2.12d)

in which p is the unit vector normal to the boundary surface of the hody
in the present confiouration, [ A J = e‘ - A" denotes the jump of the
auantity 5 from the positive side (rosftive direction of Q) to the neaative

side of the boundary surface.

The modified transport theorem and the details of the derivations may ]
be found in Hutter (Ref. 31). Dunkin and Fringen (Ref. 18) used a different

approach of derivation. Fauations (?.12c,d) have the followina form in




boundary surface of

the material

Figure 2.2 Pillbex and Circuit for the derivation
of the jump conditions,




Hutter (Ref, 21):
R U -y >R D= -a5¥ (2.13a)

R QD -G - Tgl+pg-vx(pxyg)+(y-n)e-(pag)
s - %‘E“s (2.13h)

in which ag and Qs are the free surface charce density and free surface
current density, respectively. For aood conductors the free surface
charoe and current densities, althouah achievable in hioh freauency cases,
can only be an fidealization that occurs in conjunction with the assumntion
of a perfect conductor (¢ = = ) (Ref, 32).

Fquations (2.8), (2.9), (2.11), and (2.12) complete the description of
the electromaanetic field inside movina nonferrous metals in auasi-static

cases.,

2.1.2 Mechanical Field fauations, Maanetic Body Force, Constitutive
Relations, and Boundary Conditions
The mechanical field of a nonpolar material is ocoverned by the

followina balance laws of continuum mechanics.

Mass : gf Iy e dv =0 (2.14a)
Linear Momentum : %f ’v‘° Y dgv = ‘s g(") ds + fv o I dv (2.14b)

Angular Momentum: %? fV z xp ¥ dv

= h X x 5(") dS + fy X xp £V (2.14c)
Eneroy : %f !V (% p Y ¥+o ) dv
=h£“)'x“*fvh£'x+o)w (2.14d)




in which p is the mass density, g(") the stress vector at the surface with

unit vector Qs { the body force per unit mass, U the strain enerqy, and ¢
the energy supply. The intearations are over the material volume V and
material surface S, both moving with the material contained in them.

Thermodynamic processes are not considered in this study. The heat
flux and heat eneray supply terms have been dropped in the balance law of
enerqy. Introducinag the Cauchy stress tensor b with

£(n) ML R

=p-g or t; = IR (2.15)

and applving the diveraence and transport theorems to fas. (2.14), one

obtains the mechanical field equations in local form,

Fro+tev-y=0 (2.16a)

d

p-a—t-xzv-;\tl'*p,f’ (2.16b)
t.o

I-x = (2.16c)

p%-t-u=§:vx + o (2.16d)

in which &t is the transpose of the stress tensor 1 and IT:Vy= i yj’1
is the trace of the tensor product of Tij and Vj,i’
The body force of and eneray supply ¢ arise from the electromaanetic
fields. For nonferrous metals they have the followina expressions:
pf=yxB (2.17)
6= FE-of-y (2.18)

Applyina the electromaonetic field equations (2.8) and some vector opera-

tions to Eq. (2.17), one obtains another form for the body force,
p,t=V'I’ or pfi=T1j1 (2.17a)

in which I is the Maxwell stress tensor for the maanetic system (Ref. 6),
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1 1
Tij Tj1 ;; Bi Bj - ?;; 61j Bk 8k (2.19)

Substitution of £a. (2.17) into Fo. (2.18) qives
¢ = Jde * ko (2.18a)

Equations (2.16d) and (2.18) represent a conversion of electromacnetic
enerqy into mechanical eneray. Substitution of Ea, (2.17a) into Eq. (2.14b)
and application of the diveragence theorem yields the balance law of linear

momentum:

Sefyey @V =§ g -ndss+p T.pds (2.20)
which states that the flow of electromaanetic momentum into the material
body is completely converted into a kinetic momentum which affects the
motion of the body. Detailed discussions of the electromaanetic momentum
flow and force density and of the transfer of these into mechanical momentum
and body force are aiven in Pao (Ref, 6), Penfeld and Hans (Ref, 7),

Jackson (Ref. 32), and Landau and Lifshitz (Ref, 33), Here, it is only

noted that the force actina on the material body is eaual and opnosite to
the "force" (transfer of the electromaanetic momentum) actina on the electro-
maanetic field.

No useful boundary conditions follow from the alobal laws fFas. (2.14a,c).
By applying the same technioue as used in Subsection 2.1,1, one may derive

two more boundary conditions from Fas. (2,20) and (2.14d).

R-0z+TD=0 (2.21a)
Q'EX'X*;;,‘;(Q'Q)X'%,;E*QI‘=0 (2.21b)

in which the Poynting vector in Eq. (2.21b)

_Ex'[é:‘% (2.22)
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represents a density of eneray flow by the electromaanetic field across
the boundary surfaces.

The mechanical constitutive equations are assumed to be unaffected by
the presence of the electromagnetic fields. For isotropic, homoaeneous,
1inear elastic materials, they are the usual Hooke's law

+ 2G (2.23)

Ty T 84y ey €y
in which X and G are the elastic constants independent of the spatial

coordinates and €4 is the Almansi's strain tensor, (Fa.(2.5b).

2.1.3 Summary of Equations
For convenience of future reference the pertinent eauations in this
section are arouped toaether and listed below,

Electromagnetic Subsystem

Field Equations

v-8=0 (2.24a)

vxf=-ixh (2.24b)

vxf= (2.24¢)

together with

vey=0 (2.244)
Constitutive Equations

B=wl  Q=o(f+y~p) (2.25a,b)
Jump Conditions

p-0gd-=0 (2.26a)

px0CE+yxgl=0 (2.26b)

pxTgd=o0 (2.26c)

R0y =n-Qo(f+yxP =0 (2.26d)




Mechanical Subsystem

Field Eauations

Sotov y=0 (2.27a)
pdrv=v g+of (2.27)
pgfu”ij vig s (2.27¢)

where p 5 = g x g =9 - I
¢=k"e.§ezg.ﬁ-p£cx

Constitutive Equations

T4y = A sij ey * zG e (2.28a)
] 1
T1j ;; Bi Bj - ?U; 6ij Bk Bk (2.28b)

where ey = L (uf’j + Ug g - “k,f "k,j)

Jump Conditions

p-Lg+I0=0 (2.29a)
Q'E&'X*;‘;(E'Q)X'l—oz*ﬁﬂw (2.29b)

2.2 Linearization Procedures

The field relations and boundary conditions presented in the last sub-
section are formulated in Eulerian coordinates and refer to the as yet un-
known deformed confiaquration. To render the equations amenable to analysis,
one needs a known, aiven reference configuration about which one linearizes
all the field relations and boundary conditfons. For small deformation
cases, the undeformed initial configuration of the conductor is a natural

choice. For aeometrically nonlinear problems, one can choose for reference

the last known configuration of the conductor during the solution process.
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Such a procedure is standard for nonlinear mechanical problems and is called
the "updated Laaranaian formulatfon" in the literature (Ref, 34),

The initial undeformed confiquration or any known intermediate con-
figuration durina the solution process can also be used for reference for
the mechanical subsystem., To have a consistent linearization for the
coupled problem, however, the same procedure should be applied to the
electromagnetic subsystem., Since a purely Lagranaian description is not
available for the Maxwell equations, the updated Lagranaian formulation
is a more natural choice.

Hutter and Pao (Ref. 30) have developed a linearization procedure for
moving magnetizable elastic solids. Alblas (Ref. 13), Van de Ven (Ref. 35),
and some Russian authors (Ref. 36) also suaaested similar procedures. In
all these studies, it is assumed that the deformation is small even with
very large electromagnetic fields, and that the deformation has only a
minor influence on the fields. The dominant effect on the field is the
presence of the undeformed body, The linearization of the Maxwell equations
is then carried out as a perturbation on the undeformed body., All the
authors considered polarizable maanetizable materials. The constitutive
equations and other field relations must therefore also be Vinearized.

For the aeometrically nonlinear problems in this thesis, the deforma-
tion is allowed to be finite, but the displacement increment within each
incremental solution is assumed to be small enouah to allow the field
equations to be linearized in a similar way. The approximations made in
the linearization procedure will be discussed,

For the purpose of linearization, three confiqurations of the body are

distinguished as shown in Fiqure 2.3,
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Figure 2.3 Initial, reference, and present configurations
of a deformable body in electromagnetic field,
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(a) the initial undeformed confiauration with coordinates X,
N

(b) the intermediate reference confiauration with coordinates £
(c) the present confiaquration with coordinates X.
All 5, £» and X are measured in the same Cartesian coordinate system. The
intermediate state can either be the initial undeformed state in the small
deformation cases, or the last known movino, deformed state in the non-
1inear cases. All the field vectors and tensors in this state are assumed
to be known and are denoted by a left subscript t.

The displacement of a particle from its intermediate confiauration
to 1ts present confiouration is denoted by

Uy = X4 - 84 B £, = 844 X4 - Yy (2.30)

a a
ugy Is assumed to be small such that '“i a] <<1 and |ﬁi| << ¥4, Wwhere v
L]
=/t o

The derivatives in the present confiouration referred to the inter-

o
is some characteristic wave speed, e.a., v

0
mediate confiouration then become

3 au

ay 3
T TS PR T T (2.31)
a { i a

In view of the small displacement assumptions, fo, (2.31) may be replaced
by

] )
ax, ~ Sia 38 - (2.32)

However, if coupling terms that are linear in the deformation gradient

u are important, €q. (2.32) must be replaced by the more accurate relation

a,B

(2.33)




2.2.1 Electromaanetic Field Fouations and Boundary Conditions

The electromaanetic field variables are decomposed into two parts,

The first part corresponds to the intermediate state and satisfies fas,
(2.24) - (2.26). The second part represents the perturbation which accounts
for the changes of the externally applied field and the effect of deforma-
tion, These perturbations are denoted by lower case letters and are assumed
to be small so that all the equations may be linearized with respect to them,

With Q = tk + Q, E = tE +t e and Q = tg + 4, one obtains, using Eqs.
(2.33) and (2.24),

b BB + bB),a =0 (2.34a)

a,a - ua,B (t

a =
Cagy (ty Y &) a7 Capy Ye,e (tEy t &) s t3ED, = O (2.34p)

Sagy Uy, 8~ Cagy Ys,8 (tBy * Py} 57 wp 3 =0 (2.34c)

J

Jaye " Ya,e (gt 3,00 (2.344)

For the small deformation cases, one obtains, using Eq. (2.32)

instead of (2.33),

b, o= 0 (2.35a)
Cagy (tEy *€) g+ SE D, = 0 (2.35b)
€agy Py.g = Mo Jg = O (2.35¢)
j = (2.35d)
a,a

which are the same as Eqs. (2.24).

For the small deformation cases, it is assumed that the boundary

conditions may be satisfied on the surface

S (gu, t) =0 (2.36)
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with unft normal vector ¥
] S'a
3
N = e (2.37)
a S,B S.B

in the intermediate state. The boundary conditions are then

N-[gD=0 (2.382)
NxDf+g+ixBl=0 (2.38b)
! Nx(h/wpd =0 (2.38¢)
N-Til=o0 (2.38d)

When the second order theory must be used, for exampie, in elastic stability
problems, N must be replaced by the unit vector p normal to the deformed

surface S (xi, t). n.

5 is connected to Nu by the following relation

ny = Na (Giu + NB NY eBY Gia - uu,i ) (2.39)

This derivation is aiven by Parkus (Ref. 11) and Hutter and Pao (Ref. 30).
The reduction of Eaqs. (2.34) to {2.35) in small deformation cases fis

obvious since Uy g % 0 in such cases, The nonlinear terms in the perturbed

o
quantities in Eas. (2.34) should be dropped to have a linearized set of

equations, The linearized eauations also allow for the inclusion of trans-
port current, In such cases tg' tE’ and tx are aenerated by some external

electromotive sources connected to the conductor body (Ref, 37).

2.2,2 Mechanical Field Equations, Magnetic Body Force, and Boundary
Conditions
The mechanical field eauations (2.27) may be linearized by the same
procedure as used for the electromaanetic equations, For the small de-

formation case, one has, using Fa. (2.32),




d 3
rl A %? ¥ (2.40)
eaB = (uﬂ'ﬂ + uﬂ,a) (2.4])

The eauations of motion in this case become the usual Navier's equation,

42

o Cugpgt (W46 ug  *ofy (2.42)

which is the basis of the maanetoelasticity theory used by Paria (Ref. 14)
and Knopoff (Ref. 15)., The boundary conditions in this case refer to the

surface S and unit normal vector N in the oriainal confiouration, '

o

For qeometrically nonlinear nroblems, the principle of virtual work
orovides a more convenient formulation method. In the updated Laaranaian

formulation, the principle of virtual work aives

t+at t+at t., _ t+at
ftv Sae é €ap dv = R (2.43)
t+at : '
where R is the external virtual work expression,
t+at, _ t+at t+At t+at  t+at - t+at

In Ea. (2.43), t¥ts  are the Cartesian components of the 2nd Piola-
Kirchhoff stress tensor corresponding to the confiauration X5 at time

t+at but measured ir the confiouration €y which occurs at time t,

t
tHt . P tnt
Saf 253 8a,i Yij %s,j (2.45)
and st*ﬂtc are the virtual varifations in the Cartesian components of the

af
Green-Lagrange strain tensor in the configuration X; (at time t+at)

referred to the configuration £ (at time t),

5t*At€°B S A (ua +u + ) (2.46)

u
B B8,a uYoa Y8
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The intearal of Piola-Kirchhoff stresses timec variations in the Green-
Lagranage strains is defined over the confiauration Ea (at time t) of the
body.

In Ea. (2.44) uy is a virtual varfation in the current displacement
fncrement components uy. When measured in the confiauration &a.

Su = Suy 6, (2.47)

t+at

t

t+Atf and

i i’ i
are the surface traction, the body force per unit mass, and the specific

51 js the acceleration in the confiauration x t+Atp

mass in the configuration Xy at time t+at. The intearations are defined
over the unknown confiquration Xy of the body.
When referred to the confiouration Ea of the body at time t, the

applied forces are evaluated usina (Ref. 38)

teat, to, o t+at,  t+at
ty, A= t, dA (2.48a)
t+At
teate oyt o My teat, - teat
(FTRF - ) v T (e PN I P’ (2.48b)

t+Att1 and body force t+Atf1 are aenerated by the

The surface traction
electromagnetic fields and depend on the deformation of the conductor.

To 1inearize Eq. (2.43), the Piola-Kirchhoff stress tensor is first
decomposed into two parts,

teate
Sag ™ tTag * Sap (2.49)

where tTag are the Cartesian components of the Cauchy stress tensor that
; satisfy Eq. (2.27) - (2.29) at time t, and SuB are the Cartesfan components
of the 2nd Piola-Kirchhoff stress increment tensor referred to the confiag-

t+at

uration Ea at time t. The strain increment €aR i{s separated into

linear and nonlinear parts

i . X - el RS Ly

g gy Lt ot b
Sl e——— ey TR T




t+Ate“B " e (7.50a)

€ag "~ Cag ' as (2.500)
where

e " L (uu'B + ua’a) (2.51)

Nag ™ ] Uy o Uy.8 (2.52)

The constitutive relation between stress and strafn increments used now is

SaB = Caﬁyé €ye (2.53)
Eq. (2.43) can then be rewritten as
t t.y . tHAt t
ftv cnﬂvd 676 6caB v + ftv t‘aB 6“&8 dy R - ftv t’aB Geaﬁ av
(2.54)

which is a nonlinear equation in the incremental disnlacements u_.

Linearfzation of Eq. (2.54) may be obtatned by assuminag that €ar "

€.g’ Gcas = 6eu8 and that 508 = caByé eYG. The equation then becomes
t t, . teat t
ftv CaBYG eyd GeaB v + ftv tTuB ¢ naB av R - ftv ttuﬂ GeaR av
(2.55)

The electromagnetic body force may be calculated from the linearized
Maxwell equations (2.34) or (2.35). Whichever set of equations is used,

one has
ofg = (g x (B) * (ul xR, * (§ = (B, + (4 xR), (2.56)
The last term in Eq. (2.56) s of the second order in the perturbed

quantitfes and should be dropped to have a consistent linearfzation.

However, in some problems this last term fs not small, This point will

be discussed in the next section.
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The mechanical boundary conditfon, when referred to the boundary

surface S and the unit normal vector Q in the confiquratfon gu, is

6 + TuB B =0 (2.57)

af

When Ssecond order theory needs to be used, m should be replaced by R in

Eq. (2.39).

The elasticity material tensor C and the specific mass p are

aByé
deformation dependent in the theory of finite elasticity. However, for
small strain and finite deformation problems for conductina metals, the
deformation effects will be very small, {.e., Faq x84 in these cases.

In this study, the constitutive tensor is taken the same as in the un-

deformed oriainal conficuration of the material.

2.2.3 Summary of Equations
The linearized equations of the theory of magnetoelasticity are

summarized below,

Electromagnetic Subsystem

Bt h Erefre At

Field Equations

(1) small deformation cases

b, 5 = O (2.58a)

| Capy (e, * € )0 * b =0 (2.58b)
i € a8y by.e - Vo ja =0 (2.58¢)
Jya "0 (2.584)

| (11) Yarge deformation cases ;

b =0 (2.59%)

a,a uu.B tBB.u
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a

taﬁy (tEy * ev).ﬁ B rnFY UG,F tEy,G + 3t hu =0 (2.59%)

fagy Dy, T Caby 6,8 thy,8 T Mo Jo = 0 (2.59¢)

ijG - uﬂos tJRQG * 0 (2'59d)
Constitutive Fauations

tJa * ‘10 =0 [tEa + G’u * caﬂv uR tBY] (2'60)
Boundary Conditions

N-Lpd=o0 (2.61a)

NxTk*g*tu~R)=0 (2.61b)

NxTk/ugd=0 (2.61¢c)

N-Ljd=0 (2.61d)
where Q {s the unit vector normal to the boundarv surface

S (r.m t) =0,

Ny = Sop / v’S'.B 5.8 (2.62)
In the second order theory, m is replaced by R aiven by

ng = N, (610 + NB NY ey 840" uc’i) (2.63)
Mechanical Subsystem
Equations of Motion
(1) small deformation cases

2
CJ = 1 2.64
e a_t-? ua Gua.BF + (1 +6) uB.Ba * pfa ( )
of = (o % By * (xR, * (1= ¢B), (2.65a)

(11) large deformation cases (U.L. formulation)




3t

t t. . tat t
ftv caﬁyé eyﬁ 6eaﬁ v + ftv tTar 8 naB dv R - ftv traﬁ 6908 av
R A T A LR (Mt _ Gy su tav (2.66a,b)

A a a tV a a a
where

eaB =4 (ua.B * uB,u)

"ag % uv.a uY.B

t t+at

ot Ry (R (xR (2.65b)
Constitutive Equations

SuB = CaByG e s (2.67)

where
. teat

SaB SaB " tTaB

Casyd =2 GaB 6y6 *+ 26 Gay 686
Boundary Conditions

t+at -
Np - [ Sep * Tl =0 (2.68)

N8 {s replaced by L Ea. (2.63), in the second order theory.

2.3 Maanetoelastic Plates

The 1inearized equations of magnetoelasticity presented in the previous
section are spectalized for thin plate problems in this section. In

addition, some simplifyina assumptions are introduced.

2.3.1 Literature Survevy

There are two types of studies of maanetoelastic plates fn the

literature. The first one deals with the interaction of maanetic fields




with soft ferromaanetic plates. The magnetic force and body couple are
aenerated from the maanetization of the material in this case. Eddy
currents are usually not considered, The second one deals with conduct-
ina materials, In this case the eddy currents can be aenerated from both
the time variation of the maanetic field and the motion of the plates,.
Most studies of this type consider the effect of motion only, A few
studies consider transient maanetic fields but assume that the electric
and maanetic fields are uncoupled and that the eddy current can have no
reaction to the applied field. For the analytic treatment of the subject
in both types, almost all authors consider strong and uniform static
external maagnetic fields.

Panovko and Gubanova (Ref. 32) first discussed the bucklina of a
cantilever ferromaanetic plate in a uniform static transverse maanetic
field using a neagative foundatfon type of maanetic force distribution.

Moon and Pao (Ref., 40) recoanized that in a uniform maanetic field there ?
can be no net force on a maanetized body. A model based on a distribution
of maanetic couple along the lenath of the plate was built, with the jump
conditions of the maanetic field calculated on the surfaces of the deform-
ed plate, The calculated critical maanetic fields aaree well aualitative-
1y with the experimental data, but the experimental data are lower than

the theoretical values by a factor of about 1.8. Since then, a number of

theoretical and experimental studies have been conducted tryina to resolve

this discrepancy, includina the development of a self-consistent theory
of linear ferroelastic continua by Pao and Yeh (Ref, 41), A detailed

review of many of these papers may be found in Moon (Ref. 25).

More aeneral boundary value problems have been stuaied by Van de Ven

(Ref, 35) and Parkus (Ref. 11), 1In Parkus (Ref, 11), rectanqular and
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circular plates of an elastic, soft ferromaanetic material in a uniform,

static transverse maanetic field are discussed. The linearized maaneto-
elastic theory based on Hutter and Pao's procedure (Ref, 30} is used for
analysis, The equation of motion of the plate is derived by assuming
uniform tanagential induced electric fields and uniform normal {induced
magnetic fields across the thickness of the plates. The classic Kirchhoff
assumption {s used for the kinematics of the plate. [ddy current is not
considered, and the effect of the in-plane deformation on the flexural
deformation is also nealected., The influence of the maanetic field on the
deformatfon of the plate is modelled as a surface effect. The critical
maanetic field that causes the bucklina of a clamped circular nlate has
been calculated. The resultina expression contains the 3/2 power of the
thickness to radius ratio for an axisvmmetric bucklina mode, the same as
in the Moon and Pao model for a periodically pinned beam-nlate in sinusoi-
dal deformation, No comparison to experimental data of this result is
reported in this work. However, it shows unusual completeness of deriva-
tion, starting from the dipole-Amperian current model of electrodynamics
in a movina body, through the linearization of the various field equations
and boundary conditions, to the modellina of the specific boundary value
problem of magnetoelastic plates,

Kaliski (Ref., 42) and Dunkin and Erinaen (Ref.18) studied the
vibrations and wave propagations in ferromaanetic plates under the action
of uniform, static magnetic fields, The theories included conducting
currents, but did not predict any instability phenomena, Moon and Pao
(Ref, 43) in another paper showed that the frequency of vihration of the

beam plate decreases as the maanetic field increases. The vibration and

stability problems are then connected to each other, and the critical




maagnetic field can be determined from the relation between the frequency

and the field. In two-dimensional ferromaanetic plates, Moon (Ref. 44)
and Srinivasan (Ref. 45) found that the maanetic field can either decrease
or increase the natural frequencies, dependina on its direction. To
achieve buckling and a decrease in frequency, the field has to te nearly
parallel to the plate normal., 1In Moon (Ref. 44), the bucklina theory of
beam-plates has also been extended to two-dimensional ferroelastic plates
in oblique maanetic fields,

For nonferrous conductina materfals, Dunkin and Frinaen (Ref. 18)
discussed the vibration of an infinite beam-plate in a static, tangential
magnetic field and showed that the eddy current acts as a dampina force,
Their treatment of the fnteraction terms, however, is not complete.
Ambartsumyan, et al, (Ref, 36) have published a monoaraph (in Russian) on
magnetoelasticity of thin shells and plates under the action of static
maanetic field, In a recent paper, Ambartsumyan (Ref, 46) discussed the
oscillations of thin conducting plates in static, uniform transverse
magnetic field, The linearized maanetoelastic equations (Ref, 36) were
used for analysis, The induced tangential electric field and the induced
normal magnetic field are assumed unfiform across the thickness of the
plate, An improved bending theory of plates (Ref. 47) is used, and the
shear deformations of the plate considered, The electromaanetic boundary
conditions are imposed on the surfaces of the undeformed plate. The
calculated electromagnetic body force is in-plane and includes the effects
of hoth the rotation of the plate normal and the shear deformations, The
equations of motfon are then integrated and averaged over the plate's
thickness, The equations derived are applied to infinitely lona plates,

simply supported on the edges, The comparison of the results to the
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predictions based on the assumption of undeformable normals shows very
different behavior. The latter indicates the classical phenomena of
decreasing frequency and bucklina with fncreasina field in all modes,

The former indicates dampina without oscillations in the first mode for
all values of the transverse shear effect. For the higher modes, the
deformable normal theory shows decreasina freauencies and increasina damp-
ina for small thickness-to-lenath ratios at the beainnina, and increasina
frequencies at larger thickness-to-lenath ratios. No experimental data
are reported to verify these results, However, it clearly indicates the
importance of maanetic shear forces {in such problems,

In an unpublished report, Moon (Ref. 37) presented some preliminary
studies of the vibrations of conductina plates carryina strona transport
currents. FEdelen's nonlocal variational calculus (Ref, 48) was applied
to the Lagrangian function of the coupled electromechanical system,
Electrical heatina was not considered, The results indicate stiffening
of the system; however, further studies are needed for confirmation,

Moon (Ref. 25) has conducted experiments on circular aluminum plates
levitated above a neighborina coil with sinusoidal currents, Circulatina
currents of up to 103A were induced in the plate toaether with the
associated Joule heatina, To minimize the thermal effects, resonance and
free vibration technioues were used within 10 seconds after the current
was turned on, The chanaes in frequency sauared were found to be 1inearly
related to the souares of the excitina coil currents. The frequencies of
the diameter modes were found decreased and that of the symmetrical mode
increased, However, thermoelastic effects cannot be separated from the

observed chanaes {in freauency, Further studies have been abandoned be-

cause of the inevitable complications of Joule heatina, Clearly, all the
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magnetoelastic studies of conductinag bodies have to be subjected to the

same Yimitation (Ref. 25).

2.3.2 Stream Function Method for Eddy Current Problem on a Movina Plate

In the last subsection some research on the vibrations of thin
conducting plates under the actfon of a uniform, static field have been
reviewed. The discussions there serve to reveal some aspects of the
physical nature of the problem., In this subsection, forced vibrations
of plates induced by time-dependent, nonuniform maanetic fields will he
considered. Eddy currents can be aenerated by both the motion of the
plate and the time varfation of the magnetic field. Practical non-
uniform fields such as those aenerated by current-carryina coils are of
special interest, The tanaential component of such a field will exert
a normal force on the plate and cause a forced vibration., The induced
vibration and the mutual interactions between the fields and the motion
are the object of the study.

The 1inearized electromaanetic field relations, Fas. (2.58), (2.60),
and (2.61) will be used for analysis. They are referred to the confiaura-
tion and boundary surfaces of the undeformed nlate in the small deformation
cases, and to the conffauration and boundary surfaces of the last known
position of the plate in larae deformation cases, The unit normal vector
to the boundary surface is defined by Fa. (2.62). 1In makina such a choice,
one loses the couplina terms in Fas. (2.59). An {terative procedure will
be suagested for the simultaneous satisfaction of both the electromaanetic
and mechanical field eauatfons, This procedure is hasically an extension
of the {iteration scheme for the out-of-balance forces widely used in

geometrically nonlinear elastic analysis.

T

g e e
TR e
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Fas. (2.64) and (2.66) will be applied to the mechanical subsystem
in the smal) deformation and in the incremental larae deformation analysis,
respectively. The classical Kirchhoff assumption of the undeformable
normal to the midsurface is adapted. Transverse and in-plane shear defor-
mations are not considered,
The following two basic assumptions are made in this study:
(1) the induced current density ) 1s constant across the thickness of
the plate and is parallel to the midsurface of the plate;
(2) the normal component of the induced maanetic field Bi s constant
across the thickness of the plate.

These assumptions differ slightly from what other investiaators have used
in that one neglects the normal component of the current inside the plate.
The first assumption is a qood approximation when the penetration

depth of the magnetic field is large compared to the thickness of the
plate, since the boundary condition Ea. (2.61d) will force the current
to flow parallel to the surface, The second assumption is a valid one
for such a current distribution, since the induced current is related to
the normal component of the induced magnetic field through Ea. (2.58c).
The penetration depth (skin depth) & is larae when the freauency of the

magnetic field is Tow, It is expressed by the followina formula (Ref, 49)

£ = 2 (2.69)

in which w {s the freaquency of the maanetic field and ¢ the conductivity
of the material,

Except for these two assumptions, the applied external magnetic
field 1s assumed unaffected by the generation of the induced eddy current,

That {s, the power supply cf the external driving coil {s assumed to be
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current controlled instead of voltaae controlled. The aeneratfon of the
eddy currents in the external coil thus does not need to be considered.

With the above assumption, the spatfal and time varfations of the
applied field can be calculated directly from the drivina current and
geometry of the external coil, Only the induced parts of the electro-
maanetic field varfables need to be determined,

To solve for the induced field varfables, if Eqs. (2.58) in their
present form are used, the electromaanetic field eauations in reaions
outside the plate need to be considered., Roundary conditions for the
induced field at infinity also have to be imposed. To avoid solving such
a three-dimensional problem, the current density is chosen as the primary
varfable in this study. The electromagnetic field problem will be re-
formulated by usina a ageneralization of the stream function method
suaqested by Moon (Ref, 25)., Since Eqs. (2.58) and (2.60) are the same
as Fas. (2.24) and (2.25), respectively, in the followina derivation the
notation employed is that of the total B, f, and ) in the present con-
fiquration, but referred to the reference confiauration,

Since the current density g is uniform across the thickness, one
defines

I=h (2.70)
where h is the thickness of the plate. From the continuity condition
Eq. (2.24d):

Vel=hv-J)=0 (2.71)

a stream function ¢ is introduced for the current
I=vx () =-Nxvy (2.72)

where N 1s given by Fa. (2.62). Comparing Eq. (2.71) to (2.24c), one




finds that ¢ is basically the normal component of the induced magnetic

1
field BN'

Ch Gl

The total magnetic field is separated into the applied external part

Qo and the {induced part BI.
p=p°+p! (2.74)
The induced part 1s related to the eddy current distribution, under the

quasi-static assumption, through the Biot-Savart law

(2.75)

iy [ {([)*((-fg)dv.
v.olr-x'l |

8! () - e

Eq. (2.24a) is automatically satisfied here where r is at the mid-surface
of the plate,
The stream function may now be determined by substitution of Egs,

|
(2.72), (2.74) and (2.75) into the Faraday's law, Ea, (2.24b), !

Vx 7 x () = - oh B (B4 BT +oh v x (f x B (2.76)

Only the normal component of the vector equation will be used because the
i{n-plane current is of primarv interest. Note also that the last term in
Eq. (2.76) has been linearized by dropping the self-induced field. The
varfation of é x go across the thickness contains all the shear deformation
effects, However, since the flexural motion of the plate is of primary
interest in this research, this term will refer to Q x Qo on the mid-surface
of the plate only, In small deformation cases, it is the oriainal mid-plane

of the plate. In the large deformation cases, it is the curved mid-surface

in the reference configuration of the deformed plate.




To have a aeneral descripotion, let an orthoaonal curvilinear coordinate
system g be introduced on the mid-surface, Fia, 7.4, with unit base vectors
£, (a=1,2,3), £¢ s the same unft normal vector N defined by fa. (2.62).
One has, on the mid-surface,

51 = E] (C]o Cz)’ ﬁ? = {2 (C1o Cz), 53 = {3 (C]v Cz) (2.77)

The infinitesimal 1ine element on the mid-surface is qiven by

2
ds aa de dc8 (2.78)
where
P (?2.79a)
a R
afE_ 3E

=zl X =
a2 3Ly 3Ty 0 (2.79b)

The unft tanaent vector g (a=1,2) {s aiven by

The current density on the surface can be written in the form
l = I] (K1, Cz) 21 + IZ (C]o C?) E? (2.81)
Then,

1 ) 1
v - l = 3;7—355 [327 (622 11) + 325'(311 12) 1=0 (2-82)

and

1 1 oy
{1, = — . Ja & o —~—— (2.83)
1 A5y Ay 2 ayy 3Ty

The normal component of the left hand side of Eq. (2.76) becomes

] 3 222 3
g3 ° [9 x 9 x (y 23)] = - E;;—EEE [32;'(3;; 3%;) 3C2 ( , -E-)] (2.84)

tet R=p -1 R=IRl=lg-p'l. Note that R/&° = vy (g,

where " is the qradient and operates on the x' varfables. One has, by

F W



Fiqure 2.4 Orthogonal curvilinear coordinate system ko
on the mid-surface of the deformed plate;
sa is the Cartesian coordinate of the reference
configuration of the deformed plate.
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substitutina Fa, (2.72) into (2.75),

1 e \ 1y ay
g (,(:) = - m fvl (23 x V1 u‘) x V] ('R')dv

(2.85)

- uO ] ' ' uo ' 1 .
mfvl [V1 Yo V] (R’)]£3 dv' - mfvl[,€3 * V] (‘k’)] V] (] dv

The normal component of which is

B (1) = am Sy (7 v Ty (@) (g3 - ) oV

Y0 e ] .
-4k v (830 vy (P (7 v e N) v

Note that because

(7 v 9 (1 (g5 - M) =9y - (lgy - M) w vy (R - (g} - N

vy gy W) -9y

one has

B (1) = 225 fye 09y - gy - 1) 6y (D1 - () - W) v 9,7

i
o fe (v N g v e (gy - 0 -9y () av:

let
Q=(vp v W gy+er (g3 N)
By using the followina relations,

Sy v gdV=sc g dS
~ ~

fv, f ({') V2 T’il—xr‘—dV' =~ 4 f (r')

et —————————————— =2, Pt

(2.86)

2.1

(2.27)

w)} A

(2.88)

(2.80)

(2.90a)

(2.90b)
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one has
Bl (1) = 22 ¢ (1) + 45 Fer (eh - N) ¥ 9y (1) - g2 s
N =g e (D) g T (3 - N) w9y () - g3 o

Y
0 . ' ' ] v
“mh o Ty e s W eyt vy ey - M5 g3 S

Yo

1 '
i ~ROTI SR (2.91)

under the assumption of undeformable normals, 2 (g; - N . £3 = 0.

The second surface intearal becomes

"o 1 .
RO REUR A

The volume intearal contains the 1/R sfnaularitv and diveraes at the mid-
surface as R apnproaches 0. However, for flate plates, £ - N = v and

73+ N =0 for a1l r', Ea. (.91) hecomes

BY (1) = 12 (0) * a3 Jo (g5 0 W) ¥ 7y (R) - gh oS (7.97)
which is free from the sinaular nature of the Riot-Savart law at the mid-
plane of the plate.

It fs observed that the vy g term in Eq. (2.91) is related

to the curvatures and their derivatives of the deformed plate and is

therefore of the second order in maanitude., Furthermore, the tvpre of
. ‘ singularity assoctated with it has been reduced by the order of one.
One must assume finite deflections but small rotations in nonlinear prob-

} A lems to neqlect the last term, FEa. (2,91) then takes the followina form
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u

1 uO 0 ' 1 ' '
By (0 = v (D) * g fo (£ - M) w9y (g) - g5 dS

Ho 1 \
-l p Y v NS (2.93)

The time rate of chanae of which is

v

(o]

3 0

3 I Vo, 3 . ot '
AN TF LR e (830 V) sy (g -gyds

3"

g S (8 ) ¥R [y () gy) oS

- oF /s %? (1} N) - 9y 9 dS! (2.94)

The first three terms obviously correspond to the riaid body state. The
other terms represent the perturbation caused by the relative rotation,

transverse deflection, and stretchina of the plate elements. The riaid

body terms are expected to have the dominant effect. The coupling terms
will be discussed in the next subsection.

For riqid flat plates, Fig. 2.5a, one has (Ref.25)

3 ' 1
gt Yol Zew (xy v
N

0
= ;‘, -
hoat HJ [x-x")% + (y-y')° +;_T RE
Sl

%t’ ds’ (2.95)
In the derivation of the above equation, the boundary condition on the
narrow edges of the plate is ¢ = o, For a rigid plate infinitely long
in the y-direction and of finite width ¢ in the x-direction, Fig. 2,5b,

with fields independent of the y-coordinate, one can intearate the second
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Figure 2.5 (a) Finite (two-dimensional) conductina plate;
(b) Infinitely-long (one-dimensional) conductina plate.
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term in Eq. (2.95) with respect to y' and obtain

My s M, ! %f v (x')
(x-x')2 - H?— dx (2.96)

o

Eqs. (2.95) and (2.96) will be used in Chapter Three for eddy current
calculations on riaid plates.

The normal component of the last term in Ea. (2.76) is

1
a3

3 J
[?C_] (a?? Ae) - 3-{5 (a” A])] (2.“7)

oh N« v x (yx8% =ch

where

A, =0, B.° - 4, B.°, A, =0

0
17U 3 3P B (2.9g)

2 = Uz Ry -0y By
in the Ly = coordinate system,

The three-dimensional transient field problem thus reduces to a two-
dimensional one on the mid-surface of the plate, To the above equations,
one needs to add the boundary conditfons for v described in the followina, r

Assume a simply connected plate. At the boundary curve ¢, Fia, 2.5a,
the current density I should be tanaent:

I-g,=0 (2.99)
or

(vuxN)-g =vuv-g =0 (2.100)

By intearatina the above eauatfon alona the boundary, one can replace
Eq. (2.99) by
v =0 on C (2.101)

2.3.3 Couplina Effects

The kinematic nature of the Riot-Savart law has been recoanized in 1

the last subsectfon. Eq, (2,94) has been derived based on the assumption
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of nondeformable normal and small rotation of the plate element, The
divergence property of the Biot-Savart law on the mid-surface has been
avoided by transformina the volume inteoral into a surface intearal, The
normal component of the self-field on the mid-surface of the plate has
therefore been modelled as caused by a distribution of sinaularities on
the top and the bottom surfaces of the plate,

The couplina terms in Fq. (2.94), however, are too complicated., The
effects of the motion on the field come through the relative rotatfonal
and translational velocities of the whole plate in a alobal way. However,
these terms correspond to the interaction btetween the motion of the plate
and the self magnetic field and are of the second order in the theory of
the coupled problem, One therefore drops these couplino terms and considers
only the local counlina effect, f.e., the last term in Eq, (2.76), which
has already been linearized. The couplina terms in Fq, (2.92) miaht be
{mportant for transport current prohlems, however (Ref. 37),

With the above linearization, the eddy current problem is formulated

as follows. For finite deformation incremental analysis, one has

d a
LI I ) K SO Y i LN R B R

a1y 3yp Ay TA) AT A0, Ay, 3L, o at
u_.g
cr s Vg D e gy () e
top bottom ) '
1 3 . 0 3 . 0
+ oh ———— (= [a,, (¢ x B ),) - =— [ayy (y x B") ]}
37y a5y 22 W 875 A, o W £

it

oh 3% BY (2.102)
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In the small deformation cases, {t reduces to

b/

o) ] []
:‘L :‘L I 1 oh W ¥ (X s Y )
(s + ——yﬁ - w0 ;% 2” {{ % dx' dy
[(x-x")

ax a3y 0

+ah o (W R: - R:) - %y (v Bg -w Rs)
_ L0
= R ST'BZ (2.103)

where U, v, and w are the in-plane x-direction velocity, the in-plane
y-direction velocity, and the transverse velocitv, resrectively, In the

smal) deformation of infinitely lona plates, it is

BZw ay TRt %T v {x') . 8 e 0 o0
;;?-- g v ! (‘_x')? - ~ dx' + ch 3;-(w R, - u RZ)
0 X
= 3_ g0
hat B, (2.100)

The effect of in-plane deformation has been included in Fas, (2.102) to
(2.108), The correspondina equations of motion are provided by Eas,

(2.66) to (2.67) for the finite deformation incremental analysis. For
small deformation cases, thev can be obtained by applvina the nondeformable
normal assumption to Ea. (2.64). 1In the present study, they are taken to
be the classical eauations for plates subjected to both in-plane and out-

of-plane loads, and are
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?
Eh A‘u . Hv a%v 1-v 2°u o _ a‘u
T-v"  ax ay at
2 2 ? ?
Eh "y Hv d7u 1-v d'v o _ v
P gty 1,8, = oh — (2.105b)
1-v Jy Ax at
4 4 4
D(\w+2 I w +aw+IBo_'c;_\:(l_ ogw
ax ax"ay dy v oz x o
0 0 3?‘w
= Ix Rv - Iy Bx - ph — (2.105¢)
: : at

W

Eh U o] 7y
S L ML M) (2.106a)
- 1-v ;;2' y z a_t?
Bdw 0 aw Bzw 0
DE—x+1 B. — + ph =.-.1 B 2.106b
T yzax P :{? y X ( )




[ = [ =. (2.107)

2.3.4, Maanetic Body Forces in Plates

Equations (2,102) to (2.107) will be the basis for the later chanters.
Their derivations have been based on several assumptions. Except for the
undeformable normal of the plate and the constant eddy current density and
constant normal component of the induced maanetic field across the thick-
ness of the plate, every variable has been referred to the mid-surface of
the plate. Specifically, the maanetic force density has been treated as
constant across the thickness and equals in magnitude to its value at the
mid-surface. In these calculations, the equation has also been linearized
by dropping the effect of the induced magnetic field. In this subsection,
the implications of these assumptions will be considered,

The assumptions of constant current and constant normal component of
the induced maanetic field across the thickness average the induced current
distribution. In the calculation of the normal force, the tanaential
component of the applied field is evaluated at the mid-surface, and the
contribution from the induced field B{, is not included, Fiaure 2.6a,
Since the tangential component of the induced field will varv approximately
1inearly across the thickness and have zero value at the mid-surface, the
normal force pf; corresponding to it will have the same variation and be
self-equilibrating. The result for the normal force should therefore be
a qood representation for the total force across the thickness,

The same approach is used for the calculation of the in-plane force.

Again, aood results should be obtained for the total force by averaaing
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self-rauilibratirg
(a) hodv force due to B{

%ﬁ‘ NLA,

averaac in-rlan~ force

ard moment due to Bﬁ

of M

due to rotational velocity
of the nlate normal

Figure 2.6 Body forces and moments in conducting plate.
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across the thickness, Here, however, the variation of the normal component
of the applied field Bg aives a vartation of the in-plane force across the
thickness, which creates a body moment distributed over the whole plate,
Fia., 2.6b, This effect 1s not included in the present model since all the
variables have been evaluated on the mid-surface. The body moment can he
easily included, however. Moon (Ref, 25) has derived the followina equa-
tion for the plate which includes such an effect, but nealects the in-plane

force in the plate.

4 32w
D v'w + ph ~— = FeN-vx(C (2.108)
ot
where
h/?
F = ﬂ . (g x E) dz (2.1003)
-h/?2
h/2
g = f Q x (g x Q) zdz (2.109b)
-h/?

When the plate is thin, and the drivina coil far away from the plate, the
applied maagnetic field will have only a small varjation across the thickness.
The maanetic moment in such cases can be nealected without introducina much
error,

A couplina effect not considered in the nresent model comes from the
rotational velocity of the plate normal, Fia, 2.6 (c). The rotational

velocity gives an effective tanaentfal current

in a normal direction across the thickness, This causes a tangential body

force distribution

2
= RO = (ROYZ , AW
pf = 9B = (B)" z

Ixat
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Intearatina over the thickness, one obtains the hody moment distribution

h/2 2 h/2
M=[ pfzdz=(8r‘1’)?gT‘;‘ff 22 4z
-h/? -h/?
S0 (g0 )? D (2.190)
1?2 n axat -

which is opposite to the rotational velocity and thus has a rotatfonal
damping effect. This is the "classical" couplina term reported by
Ambartsumyan et al. (Ref, 36)., To consider this effect, one needs to add
the rotational inertia force term in the equation of motion, In the

present study, one is limited to the stretchina and the transverse flexural

deflection of the plate. The rotational effect is not considered,

A visualization of the maanetic bodv force in an infinitely lona nlate
may be obtained from Faraday's concept of the maanetic line of force. The
maanetic 1ine of force is the maanetic field line to which certain amount
of electromotive tension has been applied, The force denends solely upon
the strength of the maanet producing it, A compressive force {is also
develoned between the field 1ines and is at a richt anale to them (Pef, 50),
When the 1ine of force is cut, due to either the time-variation of the

B field or the motion of the plate, exactly the same amount of force fis
released, The mechanical stress must then be developed to equilibrate
the above-mentioned tension and pressure,

In Fia, 2.7a, the applied field is varyina at a relatively low fre-
quency. Eddy current 1s induced in the plate and the aenerated self

? , field is added to the anplied field., The total maanetic field lines are
distorted from straight but still penetrate throuah the plate, The tension

and pressure assoctated with the maanetic field lines are exerted on the

plate. It 1s to this case that the theory developed in this chapter is
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(a)

Figure 2.7 Magnetic lines of force (magnetic field lines) in
and around an infinitely long conducting plate;
(a) Tow frequency case, (b) high frequency case.
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applied under the two basic maanetoelastic assumptions,

When the frequency of the applfed field is hiah, the generated self
field completely screens the applied field from penetratina the plate.
This situation is shown in Fia. 2.7b, The skin depth in this case {s
limited to a very thin layer on the top and bottom surfaces of the plate,
and the eddy current is basically a surface current on the plate. The
same situation may be obtained at low freauencies for conductors with very
larae conductivity (o ~ =). The maanetic force in this case acts like a
surface force. Boundary conditions Eqs, (2.,13a) and (2,13b) should be

used for the electromaanetic field conditions in such problems, The

maanetic force is usually called the maanetic pressure {in such cases.




Chapter 3

EDDY CURRENT CALCULATION ON RIGID CONDUCTORS

The governing equations derived in Chapter Two for the calculation
of eddy currents are applied to riaid conducting plates in this chapter
as a first step in the study of the couplina of eddy currents and defor-
mations. The one-and two-dimensional eauations for steady state eddy
current problems are nondimensionalized and solved by the finite element
method, The role of the nondimensional parameters in these equations
are investiqated, Finite element transient analysis {is also applied to
the one-dimensional problems. The results of the analysis are verified by
comparinag with analytic solutions in the hiah and low freauency extreme
cases and with experimental data. The capability, {nput, and output of
the computer proarams developed are briefly described,

A literature survey of the eddy current calculation on conducting
plates is aiven in the first section. The intimate relation between the
quasi-static field equations and the circuit eocuations {is the basis of
many studies and provides another point of view to the stream function
formulation of the eddy current calculation used in this work, This

subject 1s discussed in the second section of this chapter,

3.1 Literature Survey

Because of the importance of the eddy current calculation in the g

present research, a brief literature survey on this subject is afven in

this section, The purpose of the survey is to provide a backaround for
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the comparison of the stream function method with other approaches to this
problem, Some key features of eddy current calculation and recent advances
are also highlighted.

As discussed in Chanter Two, eddv currents are found in any conductina
materfal which is subjected to time-varyina maanetic field, Its existence
is manifested by (1) induced Joule heatina, (2) a maanetic reaction field,
and (3) a maanetic force resultina from the interaction of the inducina
and reaction fields. 1t is possible to put the eddy currents to cood use.
Examples are induction furnaces, which use the ohmic losses of hiah fre-
quency eddy currents; electromaanetic nondestructive testina, which uses
the maanetic reaction field of eddy current; and maanetic formina and
tevitation, which use the maanetic force aenerated by eddv currents, It
is sometimes necessary to take steps to reduce the effect of eddy currents,
An example is the need to minimize losses to enable the cores of trans-
formers and rotatina electrical machines to carry the required maanetic
flux; one way this is achieved is by laminatina the cores. Studies of the
effects of eddy currents may be found in the technical literature related
to 2all of these applications.

Riaorous analytic solutions to eddy current problems can seldomly be
obtained and are usually limited to infinitely ext> “ed conductors or
closed conductor shapes such as spheres or ¢”° os ~~. Many such prohlems
and some solutions may be found in Smythe (Ref, 51), Corductors with
finite lenath and more aeneral shape are more difficult to handle., The
solutions are usually obhtained hy either analytic techniaues such as
iterative approximation and Raylefah-Reitz method, or by numerical means

such as finite difference, finite element, and boundarv intearal eauation

methods., The chofce of the solution method depends to a larae extent on
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the formulation of the problem., The maanetic eneray and variational
principle are the basis of many studies, The circuit analoav provides
another model more intuitively appealfna to electrical enaineers,

The analytic technioues have the advantace that the problem parameters
appear as varfables in the solutions. The effect of alterina one or more
such parameters can therefore be fairly readily anpreciated. The
numerical methods have wider application but the disadvantaae that the
parameters are concealed in the numerical results produced from a aiven
set of data. Dimensional analvsis in this case can be used to reduce the
excessive computation with numerous sets of data., Some illustrations of
the application of dimensional analysis in the present study are aiven in
sections 3 and 4 of this chapter. A brief introduction to the use of
dimensional analysis in eddy current problems is oiven in Stoll (Ref. 5?);
this is one of the few references which dealswith this specific application
of dimensional analysis,

Books and monoaraphs addressina the analysis of eddv currents are
scarce in the literature, Two monoaraphs on this subiect are Stoll (Ref.
52) and Lammeraner and Stasl (Pef, 53), The problems discussed are mostly
two-dimensional ones solved by analytical methods or finfte difference
techniaues, The application of finite element and boundary intearal
equation methods in this area has recently been developina rapidly, A new
monoaraph edited by Chari and Silvester (Ref, 54) contains many discussions
of these methods in eddy current problems,

The eddy current problems studied most in the literature are the two-
dimensional ones. Takina rectanaular coordinates to illustrate these,

one may have problems in which (1} the currents flow in the z-direction

only, and J,, H,, and H  are functions of x and y; and (2) the maanetic
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field has a sinale component in the z-direction onlv, and H7, Jx' and Jv
are functions of x and y. In the first case, it is convenient to use the
maanetic vector potential which is parallel to the current density to
formulate the problem, The maanetic vector potential Q is defined as
v x Q = ﬁ (3.1a)
vepA=0 (3.1b)
In case (1), Ax = AY = (0 and AZ is related to current density throuah

(Ref. 52)
A, (p) = [ [ %; J, (x') In [r-r'l d (area’) (3.2)

area
A two-dimensional diffusion equation may then be derived for Az with
appropriate boundary conditions,

Silvester and Haslam {(Ref, 55) first presented a finite element
Galerkin analysfs of eddy current fields fn maanetotelluric problems usina
such a formulation. Chari (Ref, 56) showed a similar formulation usina a
variational approach for the eddy current problem in maanetic structures.
Since the maanetic vector potential must be calculated both inside and
outside the conductor, the discretization of space must be extended to
reajons sufficiently far away from the conductor, Chari's study concerns
the hiaghly permeable iron part of the electrical machines where sianificant
skin effects and ohmic loss are developed. The eddy current problem on
infinitely lona plates in the present research helonas to the same class
of two-dimensional problems but is directed to conductina materials with
small relative permeability. For such material the skin effect is not
well developed {n the low ana intermedfate freauency ranae., The stream

function method used has the advantaae of limitina the discretization to

the conductor body only, at the exnense of solvina a system of linear
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equations with a full coefficient matrix,

For the case in which the maanetic field has only a sinale component
Hz, many authors use the electrical vector potential 1 to formulate the
problem, The electrical vector potential I {s defined such that

VXI=,€ (3.3)
For strictly two-dimensional problems, I has only one nonzero component
TZ, which equals Hz' A two-dimensional diffusion equation for T7 can
aaain be derived. The problem may then be solved either by finite element
method through a variational formulation (Ref, 57), or by boundary
intearal equation method throuah a transformation of the differential
equation into anintearal eocuation (Ref. S8),

Silvester (Ref. 59) developed the useful concept of eddy current modes
from the efaenfunction expansion of the solution for this class of problems.
The orthoaonality of the efaenfunctions enables an eaquivalent circuit
representation of the eddy current distribution to be developed., Fach
efigenfunction, or mode, forms a separate R-L circuit and there is no
ragnetic couplina between the modal circuits. In a subseauent paper (Ref,
60), Silvester extends the modal network theory to infinitely lona flat
conducting plates. The current density Jz 1s used to formulate the prob-
Tem, and consideration is 1imited to the conductor itself., The plate is
subdivided into N parallel strips of eaual width., Fach strip fs assumed
to carry a uniformly distributed current at all times., The thickness of
the plate comes into the calculation of the resistance R of the strips.
The finductances are calculated using the geometric mean distance theory
of linear conductors. The solutions are then found by solvina the matrix
circuit equations, This eddy current modal theory has later been apnlied

to the studies of many other eddy current problems (Refs. 61, 62).
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For the case in which the eddv current flows in z-direction only,
Silvester (Ref. 63) developed an inteaqral eauatfon essentiallyv of the
Fredholm type which treats current density directly, This eauation has
been solved with varfous methods by Schaffer and Bandevet (Ref, 64},
by Silvester {Ref, 65), by Gopinath and Silvester (Ref. 6€), and by
Silvester, Wona and Burke (Ref. €1). Trowbridae (Ref, 54) and Biddlecombe
et al, (Ref., 67) also developed an intearal equation formulation for eddy
currents usina the maanetic vector potentfal,

For two-dimensional eddy current problems in cylindrical coordinate
systems, the only nonzero components of current and the maanetic vector
potential are in the circumferential direction, A two-dimensiona)
diffusion equation can be constructed for the maonetic vector potential.
Donea, Mfuliani and Philipne (Ref, £8) presented a finfte element formula-
tion usina a variational method. Recker and Pillsbury (Pef, 24), and
Miva, et al. (Ref, 28) solved it by usina a finite element Galerkin
technique, Both studies consider counled electromaanetic-mechanical
effects, Many electromaanetic NOT studies also consider problems with
cylindrical symmetry. Most of them use a variational, or enerov functional,
formulation, Fxamples are Palanisamy and Lord (Ref. €3), Nehl and Demerdash
(Ref. 70), and Hwana and Lord (Ref, 71),

A11 the two-dimensional problems discussed assume the conductors to
be {nfinitely lona, For conductor nlates with finite lenath, the eddy
current problem becomes three-dimensional. To simplifv the problem, it {is
usually assumed that the skin depth is large compared to the thickness so
that the current densitv can be taken as constant across the thickress,
The network analoav, in many respects eauivalent to eddv current modal

theorv, nlays an important role in such problems, This analeav will be
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discussed in more detail in the subseauert section of this chanter,

Turner (Refs, 72, 72, 74) has developed comnuter proarams for two- and
three-dimensional transient eddy currents, The conducting materials are
represented by a network of current-carryina line elements in order that
Maxwell's field eauations may be replaced bv Kirchoff's circuit rules, Loon
currents are used as the variables in the analysis so that the ¥irchoff's
mode eauations are satisfied automatically. Thin conducting plates and
shells are treated as two-dimensional nroblems bv such a network model,

Kioeardi and Suzuki {Ref, 75) developed a finite element circuit method
for the analysis of transient eddy currents on thin conductina plates and
shells, The electric vector notential is used to formulate the problem,
Unlike the two-dimensional problems such as lona prismatic hars, the
electric vector potential now is not enual to the maanetic field but differs

by an additional scalar potential ¢, i.e.
=u]+v (2.4)

20

A set of circuit eaquatfons are formulated in this method from the balance
of the maanetic eneray and Joule loss of the system, FEddy current modal
analysis is then performed throuaoh an efaenvalue analysis of the derived
finite element circuit eauations. This formulation aives a set of linear
equatis ith fully symmetric matrices. The effect of the thickness comes
into the _alculatfon of the resistance matrix, The inductance and resist-
ance matrices in chis method are all calculated by numerical intearation,
Compter and Hamels (Ref, 76) studied a coupled mechanical-eddv current
problem for a movable conductina disk usina a retwork circuit model.
Carpenter (Pefs, 77, 78) described a finite element network model and its

annlication to eddy currents in thin plates. Thus most eddvy current studies

for thin conductina plates use a circuit model for analysis., The applica-
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tion of variational methods is difficult because the dissipation term
affects the varfational formulation. Hammond and Penman (Ref. 79) studfed
the upper and lower bounds of the resistances and inductances of thick and
thin conductina plates usina a variational approach, but the problems they
treated are for the classfcal skin effect of current carrvina conductors,
not the induction problems treated in the present research, De Mey (Ref.
80) presented a varfational, intearal eauation study of eddy currents in
plates usina a stream function representation, But he nealects the
reaction of the eddy currents on the maanetic field and therefore only

obtains a local solution of the problem,

3.2 Quasi-static Field Equations and Circuit Ecuations

As discussed in the last section, there is an intimate relation
between the circuit model and the various formulations for eddy currents
in thin plates, This relation s examined in this sectfon throuah the
correlations between the quasi-static Maxwell's equations and the rules
of circuit theory, The comparison provides a point of view alternative
to the stream function method used in this study.
The scalar potentfal ¢ and the vector potential e are first introduced
for time varyinq fields, Thev are defined as (Ref. 32)
B=vx§p (3.1a)
E=-2xA-v0 (3.5)

and

veA=-ue %T ¢ (Lorentz condition) (3.6)

These relations come from Equations (2.24). The electromaanetic field can

be completely described by
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Ve-uc;?es-u)l (3.78)

2

V2¢-u€a—'2‘¢

0
= . - (3-7b)
at €

Nealectina retardation in the quasi-static case, one obtains the aeneral

sotution

ﬁ=57fv]F>ldV (3.Ra)
1 1

¢ -mvap dav (3.8b)

The relations between quasi-static field equations and circuit eaquations

will be discussed in terms of these two potentials,

The circuit theory includes the two followina Kirchoff's laws:

{1) the current law: At any noint in a circuit, the current flow is
eoual to the rate at which charae is passino throuah a cross-section
of the conductor at that point;

(2) the voltage law: Around a closed circuit, the alaebraic sum of the
potential difference 1s zero.

These two laws may be put into the followina eauatfon form when there is

no capacitor in the drcuit, Fia, 3,1, which is the case in the present

study since eddy current arcina is not considered.

z Iin =z Iout (3.9a)
e=1IR+1L %% (3.96)

In which I is the total current across the cross section of the conductor,

e fs the applied electromotive force; R is the resistance per unit lenath;

and L the inductance of the circuit.
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Path of integration

Figure 3.1 Metallfc conductor wire showing path of
integration lying on surface and the
equivalent RL circuit,

Figure 3.2 Mutual inductance between circuits,
Yariation of Q'dv' {nduces an emf in d&.
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£a. {3.9a) comes from the eauation of continuity of current and is
automatically satisfied by the potentials Q and ¢ defined before. The
relation between Ea. (3.9b) and the auasi-static field equations is dis-
cussed below,

A circuit is defined as any closed path, For the one shown in Fia.
3.1, one first separates the total electric field f in the conductor into
two parts: {' is that due to charaes and currents defined by Fq. (3.5),
and EO is the impressed field due to energy sources such as the external

exciting coil.

=g +£° (3.10)
Then
o _ !
A
sl s 2 Ay ) (3.11)
cy’2 Bté .
Intearatina around the circuit alona a nath on the surface of the conductor
one has
0 1 a
FO-dg=ao - dp+dapp-dgtovs . dg (3.12)

The term on the left-hand side of the above equation is the applfied electro-
motive force, which is desianated e as in Eq. (3.9b), The last term is zero

since without retardation one has

§V¢-dg=£%%dz=§d¢=o (3.13)
The second term on the right-hand side of Eq. (3.12) mav be written as

%{ { Q . d& for a rigid stationary conductor, in which Q {s determined by

Ea. (3.8a) in the quasi-static case., Assume that the conductor is a wire

with small cross-sectional dimensions so that J' dV' in Eq, (3.8a) may be

replaced by 1 d&' where I is the total current across the cross section of
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the wire. One has

6=§%§%dé' (3.14)
and

d dl ;
Ht_‘.'{e'd&:l‘a'f (-.:5)
in which

Y 1
L'ﬁ§§?%"%
is the inductance of the circuit and is a function only of the ceometry of

the circuit, Another way of defining L is the followina:

LT = } Q - dg

=/ vxA.dg

s B-dg (3.16)
or
Ls}fsﬁodg (3.17)

in which 8 {s the total maanetic induction,

The first term on the right-hand side of Ea. (3.12) involves Ja
which represents the total electric field E at the surface of the conductor,
For sinusoidal time variations y 1s related to the total current l by
N =%Cg (3.18)
in which Ac is a complex number havina the dimensions of area, but not
actually equal to the cross-section area of the conductor, It is complex
because the current density at the surface of a conductor is not in phase
with the total current when a skin effect exists. In such cases l/oAc,
designated by Z, is called the impedance (per unit lenath) of the conductor,

When the frequency is sufficiently low that the skin effect is not

well developed, the current is essentially uniform over the entire cross-

e t——— e — e et
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section of the conductor, In such cases Ac is the actual cross-sectional

area A of the wire and !

; % g o dg =1 } %K-dz = IR (3.19)
in which
R:fﬁdg (3.20)

is the usual resistance per unit lenath of the wire.

The quasi-static field equations are therefore related to the equili-
brium equation (3.9b) for a closed circuit. In the induction problem, the
emf e is generated by the varyina maanetic field due to the excitina coil,
Fia, 3.2. Assume that the induced current in the excitina coil b is zero,
j.e., that 19 1s voltace-controlled or that the excitina coil has infinite
conductivity. One has

_ 3 A0
e“§ﬁﬁ - dg (3.3

in which Qo is the comncnent of vector potential due to the maanetic field

of the exciting coil and is aiven by

o _ 1 .0
[ = vy v L

W10 1
-3 § L (3.22)
b

Substitutina Ea. (3.22) into Fa. (3.21), one has

_ d1°
e= - Mg (3.23)
in which

- 1 .0 .
M_h§ah;d& ds (3.24)

is the mutual fnductance between the coils a and b,
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The relationships established above for a sinale discrete current loop

use exactly the same assumptions applied in the present work for a thin
conducting plate, 1i.e., the skin effect is not sianificant and the current
is constant across the thickness of the plate. A further similarity occurs
between the circuit equation that describes the discrete circuit and that
for the eddy current modes on the conducting plates. The eddy current
modes are certain distribution patterns of the current density that are
electrically and maanetically uncoupled from each other., The modal distri-
bution can be obtainecd by decomposina the total current distribution into
components orthonormal to both resistance and inductance onerators, The
derivation is briefly described below.

The law of conservation of magnetic enerqy, or the Poynting's theorem,

for the induction problems states that (Ref. 52)
du
R (3.75)

in which U is the total maanetic energy due to the current distribution,
W is the total ohmic loss, and Um the mutual magnetic eneray between the
external maanetic field and the induced current, Assumina constant current

across the thickness of the plate, one has (Ref, 249)

=B 1 .
U= g é g oo dp * Ao 95p dSq (3.26a)
N=£n,1-,1ds (3.26b)
- . p0
U, = g N A dsS (3.26¢)

in which n {s the area electrical resistivity, Qo is the maanetic vector

potential of the externally applied field, and RE the total induced

current density across the thickness of the plate.
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By usina an electric vector potential T for the current density,
and the finite element technique Kameari and Suzuki (Ref.75) obtafined the

followina coupled circuit eauations for the plate
d d
L gt (VY + [RT (W} = It ‘e} (3.27)

in which [L] and [R] are the time-independent inductance and resistance
matrices, respectively, Both [L1] and [R} are positive-definite and fully-
populated; however, for a uniform mesh they are also svmmetric., Apnlyina
the aeneralized efaenvalue analysis to the coupled system of equations,
Kameari and Suzuki obtained the eddy current modes {Fn}, n=1,2, ..., N,

where N is the total numher of the nodal points. Since

(L) (B} =2 (R){E ) (3.2%)

one has

(E 3T [R] (E.} = ¢ (3.29a)
m n mn e

(E Y (L] (E.} = A & (3.295)
m n n mn

The modes are therefore electrically and maanetically uncoupled., By

expanding the potential T by the eddy current mode,

N
Ty = z] P, (E} (3.30)
ne

one obtafins the uncoupled equation for each mode

d d -
P+ A I P, = 3t ©n n=1,2, ..., N (3.31)
in which
_ T
e, = (E} (e) (3.32)

The modal equations (3.31) are electrically and maanetically uncoupled to

each other and are linked maanetically to the driving field throuah Eq.
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(3.32). Ea. (3.31) 1s completely equivalent to the circuit equation (3,9b)
with resistance, inductance, and decay time constant 1, Aps and xn, respec-
tively, The full analoay between the circuit theory and the quasi-static

description of eddy currents on thin plates is thus completed.

3.3 Eddy Currents on Infinitely Lona Plates

The finite element Galerkin technfaue is applied to solve steady
state and transient eddy current equations for infinitely lona conductina
plates., The formulations and the Fortran codes developed are described
in subsection 3.3.1. To facilitate parameter studies for this problem,
the steady state eddy current eauation is nondimensionalized, A study of
the relevant nondimensional parameters is presented in subsection 3.3.2,

] toaether with other exarples which provide analytical and experimental

verifications of the numerical results,

3.3.1. Finite Element Formulations for Steady State and Transient Problems

The transient eddy current equation is aiven by Ea., (2.104), with-

y— - -

out the couplina terms,

32 ay ] L ' 8,
‘% - ou -l+ ouh[ dx': oh —— (3.33)
aX at on 2 h ot

)0 (X..X' ) + .§

in which X {s used to denote the position in physical units, and L is the

total width or span.

3.3.1.a Formulation and Implementation for Steady State Prohlems

For steady-state harmonic currents in the plate, Fa. (3.33) may

be nondimensionalized into
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d2

dx

R (Y o) .
- iR¢ + 1-2-;[ m dr. = iRR(x) (3.38)
[}

in which x and £ are distances across the width nondimensionalized with
respect to the thickness h; ¢ = QIOe‘wt; Bg = (u/A)B(x)1091”t; the
maanetic Reynolds number R = muoh?, which 1s related to the skin depth &

throuah R = 2(h/&)%: 1°

is the current in a nearby exciter coil; and ¢
is the nondimensionalized width,

The finite element (FF) Galerkin method is used to solve the intearo-
differential equation (1 4Y, & is approximated alobally and locally hy

piecewise linear models

4= T M @ (3.35a)
kel k "k
2
¢E = x] NE O (3.35b)
k=

in which G is the total number of noda. points, the superscript E denotes
the E-th element, and Mk are the alobal interpolation functions generated
from the local Tinear element shape functions NE, The linear alaebraic

equations for each element are

- g st o - i i pE o 4 i ? of s, = iR (3.36)
ke IR ey 3K T 3K
in which
N’ dNE 3 £ F
Sik T} Ix & i Py =R I i Ny dx
4 3

(3.37)

SAOV PRSPPI A




the weiahtina functions w§ used in calculatina the intearal term {is

<

NE (x)

E
W (o) j(___i,_._T dx (3.30)

£ (F-—XY + X

Both Fas. (3.37) and (3.38) are intearated analvtically, The resultina
element matrices are shown in Appendix A for both the Tocal and nonlocal
terms, The assembled alobal matrix is complex, aenerally nonsymmetric,
and fully populated. The usual 1imited connectivity (banded matrix)
5 finite element representation is lost due to the nonlocal nature of the
problem,

When the freauency of the external maanetic field is lTow, the effect

of the self field is small. The solution in this case will approach the

Tocal solutfon obtained by droppina the second and third terms on the left

hand side of Eq. (3.34). When the freauencies are hiah, the distribution

of the eddy current is primarily influenced by the self field, The

solution will approach the one obtained by droooina the first term on the

left of Eq. (3.34). The solution so obtained is an asvmptotic value for
the hiah frequency 1imit, and 1s called *he "imaae solution™ 1in the
1iterature,

A Fortran proaram EDDY1 has been developed based on Eqs. (3.36)-(3.38).

It ts desiagned to perform the following calculations:

(1) Steady state local solutions of stream function, current,
temperature, and pressure,

(2) Steady state nonlocal solutions of stream functfon, current,
temperature, and pressure, and

(3) Steady state imaae solution of stream function, current,

temperature, and pressure,

. ¥ N
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To perform the calculations necessary to construct a spectrum, £0DY1 performs
the above calculations for any number of maonetic Revnolds numbers {in one
run., Multiple load cases (up to 10) are allowed, Fach load case will he
solved for all the maanetic Pevnolds numbers specified for that rupr.

Presently, EDDY1 can handle uniform magnetic field cases and cases
where the fields are aenerated by any number of conductor wires parallel
to the plate, The strenaths and senses of the currents and the positions
of the wires may be different. Space has also been left to include other
tvpes of exciting fields in the proaram,

Program EDDY) takes the geometric information of the plate and magnetic
field source information as input. The total numbers of nodal points, load
cases, parameter sets, and the plottina option of the output must be
specified on the master input card, Nodal noint information mav be aenerated
for portions of the mesh that are unifcrm,

The tvpe of source of maanetic field {is specified, No other informa-
tion 1s needed for a uniform maanetic field, For the parallel wire cases,
the positions, senses, and the relative strenaths of the currents in each
wire must be input subsequently,

A1 the input data must be nondimensionalized accordina to the con-
ventions presented in the formulation.

Values of the stream function, eddy current, temperature {induced in a
half-cycle of the current, and time-averaaed maanetic pressure exertec on
the plate are produced as output of the proaram, The stream function and
eddy current are calculated in comnlex form, The stream function values !
are calculated at the nodal pofnts of the mesh, while th~ current, tempera-

ture, and pressure are evaluated at the centroids of the elements. The

stream function and eddy current are aiven in complex form, and the modulus
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and phase anale are calculated for the eddy current, Values of the modulus
and phase anale for different freauencies may be used to aenerate the
spectrum of the current any anv point on the plate. These curves and the
spectrum of the excitinn current may be used to calculate the transient
current at the point by fast Fourier transform techniaues.

A1l the outputs of the proaram may be nlotted usina a printer-plotter
subroutine, This capability is optional and can be snecified in the input,

In this proaram the local solutions are printed out and plotted
parallel to the nonlocal sclutions for comparison. When there are several

load cases, the results are printed out in arours in the sequence of the

load numbers, In the multinle parameter (freauency) cases, this is done
for each Reynolds number, Title lines will be printed for each parameter
to distincutish the different arouns of output. Imace solutions, which are
independent of the Reynolds number, are printed out last in the seauence

of load cases.

3.3.1.b Fformulation and Implementation for Transient Problems

The Galerkin finite element (FE) version of the transient eauation
(3.33) 1s formulated in a way similar to the steadv state nroblem, It is
intearated with respect to time by an implicit scheme., v is anpro:imated

in physical units aloballv and locally by

{3.39a)

(3.39b)

The 1inear equations for each element are
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where the wefghting functfon {s:

E
Ny (X)

dX 3.42
(X-X')2>+ ( )

—

¥

Equations (3.41) and (3.42) are again integrated analytically, and the

Wy (x1) 1

resulting expressions are those afven in Appendix A, The global matrix

form of Eq, (3.40) is

[A] (¥} = [S] {9} = (R} (3.43)
in which
(A] = [Q] - [P] (3.44)

Again, [A] 1s full and generally nonsymmetric.

The transient equations (3.43) are integrated usina the following

scheme

g (A = (-0) [S1} {9}y,

= (3r [A] + 6 [S1} (4}, + 0 (R}, + (1-0) (R}, (3.45)

o= 0.5 has been used in all the problems analyzed,
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A Fortran program EDDYIT has been developed based on Eqs. (3.41)-(3.45)
and has been built into a more general transient analysis program EDDYBEAM

for the coupled electromagnetic-mechanical effects. The purely transient

s one-dimensional eddy current analyzer EDDYIT may be recovered from it by

§ specifying the input parameter LINK to be zero., EDDYIT {s designed to |

perform the following calculations for pure eddy current problems: ‘
(1) transient local solutions of stream function, current,

3 temperature, and magnetic force, and

(2) transient nonlocal solutfons of stream function, current,
temperature, and magnetic force.

EDDYIT handles one load case in one run only. The two types of

magnetic fields included are a time-varying uniform magnetic field and a

field generated by any number of conductor wires parallel to the plate.

The strength and sense of the currents and the positions of the wires may
be different, but the time variations of all the currents must be the
same, The time function may efther be analytic and calculated at each
-'A time step, or numerical and read in from the input data. Presently a
% half-sine function, a continual sinusoidal function, and a ramp function
‘;%- of time have been included in EDDYIT. Flexibility has been left for the
F user to create additional modules if other analytic forms of the time
{ function are preferred. The temperature calculated {s the instantaneous
temperature rise; the effect of heat conduction is not included,

Geometric information of the plate, source information of the magnetic

- - -

field, relevant physical constants, time integration parameters, and the

; numerical {nformation ({f any) describing the time function of the field

must be {nput to the program EDDY1T. The units of all the input values must

be consistent. The rationalized MKS system (Giorgi system) has been used
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for all the problems in the present research,

Mesh aeneration and incremental plotting capabilities are also includ-
ed in EDDY1T.Time history plots at selected points and spatial varfation
plots at selected time-steps for both current and maanetic force may be
produced in the same scale for comparison, Appropriate mesh generation
and plotting information must be input if these capabilities are used.

Values of the stream function, eddy current, magnetic force, and
temperature at each time step are produced as output of the program., The
stream function values are calculated at the nodal points of the mesh,

The eddy current and temperature are evaluated at the centroids of the
elements and are constant within each element. The maanetic forces are
calculated at the inteoration points of each element and vary within each
element with the tangential component of the applied field. The outputs
may be plotted usfng a 1ibrary subroutine. A short form of the output is
provided as an option if lona time solutions are needed. Local and non-
local solutions are handled as different jobs and must be executed separate-
ly. The type of analysis (local or nonlocal) must be specified in the

input,

3.3.2 Numerical Results and Experimental Verifications for Infinitely
Long Plates
The programs EDDY1 and EDDYIT have been applied to a number of problems
to test and verify the programs' validity and to demonstrate their utility
for problems of scientific and practical interest., A portion of the

verification process 1s the comparfson of the computed results with experi-

mental measurements., A summary of these numerical results is given below,
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3.3,2.,a Steady State Analysis by Proaram EDDY)

The first test of the numerical techniques discussed in this
section 1s the calculation of induced currents in a lonag rectanaular plate
by a two-dimensional maanetic field usina program EDDY1,Fiaqure 3.3. Near
the center of the plate, Section C-C in Fioure 3,3, the end effects of the
plate are negligible, and the currents are one-dimensional or are parallel
to the Yong edaes of the plate, The external magnetic field used in the
! test cases was that due to parallel current filaments above the plate and
a uniform time dependent magnetic field., In addition to the induced
current distribution across the plate, the induced temperatures and maanetic

pressure distributions were calculated,

The followina objectives were met with the program EDDY?,

a) Comparison of low magnetic Reynolds number (R) results with

direct quadrature of local theory,

b) Comparison of high R results with the image method.

¢) Demonstration of the importance of nonlocal theory for
' moderate frequencies or R,
d) Comparison of finite element calculations with experimental
’. ~ infrared measurements reported in Refs. 101 and 102.

e) Combination of the finite element (FE) results for different
* . field frequencies with the fast Fourier transform (FFT) to

predict dynamic currents and pressures,

f) Demonstration of the importance of the edge effect in

increasfng the current density and magnetic pressure.

—— e e

g) Calculation of the magnetic forces on a lona plate due to

a tilted coil,
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Figure 3,3 Induced currents in a Tong rectancular plate,




’

86

h) Examined the effect of a banded matrix as an approximation

to the full matrix or complete nonlocal solution.

1) Demonstration of the size effect of the width on the induced

current through a different nondimensional maanetic Reynolds
number Rw.
Each of these will be described separately below,

a) Comparison of FEM with Direct Quadrature for Rccl, When R<<l
one may drop the nonlocal terms in Eq, {3.38) and obtain the local
theory for the stream function, 1i,e.

QE% = {RB(x) (3.46)

dx

The solution for the one-dimensional case can be found by direct intearation
of a given B(x). Comparison of the Tow Reynolds number solution for the
finite element method (FEM) and direct guadrature is shown in Figure 3.4

for a pair of current filaments centered above a long conducting plate. The
results show excellent agreement.

b) Comparison with the Image Method, When the frequency is hiah, i.e.,
R>>1, the nonlecal effects act to prevent the magnetic field from penetrat-
ing the plate. In this 1imit the solution can be approximated by consider-
ing an image coil below the plate which serves to cancel out the normal
component of the total maanetic field (Figure 3.5). The results of the
one-dimens{onal FEM with the image coil calculation are shown in Figure 3.6
and again show excellent agreement,

c) Nonlocal vs. Local Theory for Eddy Currents, A comparisor of the
local and nonlocal theories for eddy current distribution is shown in
Figure 3,7 for different R or frequencies, It is clear that even though

the skin depth may be several times the thickness (R = 0,1, & = 4,5h), the
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Figure 3.5 The image method for high R.
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Figure 3.6 Comparison of FEM and image method solutions
for high R for a pair of current filaments j
centered above a long conducting plate (R = 5). :
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nonlocal distribution differs sianificantly from the local theory, The
importance of the nonlocal effects is not recoanized by some eddy current
calculations which neolect the reaction field of the induced current
(Ref, 80),

A more fundamental difference between the nonlocal and local effects
concern the maagnetic pressure, When the nonlocal or self field of the
induced currents {s neqlected, the average force on the plate for.a sinus-
oidal current is zero, The nonlocal or self field effects are necessary
to obtain a time-averaged force on the plate between the sources of the
external field (such as cofls or current filaments) and the currents in
the plate,

The phase difference between the driving maagnetic field and the
induced eddy current is 90 dearees in the local theory, as is evidenced
by Eq. (3.46). The phase difference is zero in the imaae solution. The
induced current densities in Fiqures (3.,4) and (3,6) therefore have the
same phase across the width of the plate. For the intermediate case, the
eddy current density has different phase anales at different locations of
the plate, Fiqure 3,7 shows the modulus, or the maximum value, of the
current density across the plate,

d) Comparison of FE Calculations with Experimental Measurements,

An important feature of this research program has been the experimental
verification of the numerical calculations. To check the calculations,
measurements of one of several physical quantities along the surface of
the plate must be made such as electric or magnetic fields, induced

temperature, or magnetic pressure. Measurement of electric or magnetic
fields assocfated with the induced currents in the plate involve taking

data of a sufficient number of points to map out the current distribution.
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It has the advantage that the time history of the electromaanetic field
variableec 2t such points may be more easily determined, Such a technique
will be used in the experimental verification of the results of the
transient analysis, To verify the current distribution, an infrared
scanning technique which senses the incremental temperature distribution {s
used (Ref.102). This technique is based on the fact that for small times
after the induced currents are generated, the heat conduction can be
neglected and the induced temperature is proportfonal to the square of

the current density. The heat equation is aiven by

2
-xva +c %% = g; (3.47)

in which ¢ is the thermal conductivity, and ¢ is the heat capacity of the
plate. Under appropriate conditions on the aradient of temperature and
time, one may neglect the first term and write

t
T l—c [ 224t (3.48)

To simulate 4 one-dimensional problem, a rectangular multiturn
induction cotl is placed parallel to a flat stainless steel plate and
induced temperatures are measured across the plate under the middle of the
coil, Figure 3.8, The two-dimensional infrared scanner used is described
in Ref, 102, An infrared thermogram of the temperature or J2 pattern in
the plate due to a pulsed rectangular coil is shown in Figqure 3.9, The
induction coil has damped sinusoidal currents, Comparison of the qualita-
tive behavior of the measured temperature and the calculated temperature

distribution along the plate using an effective frequency is shown in

Fiqures 3.10 and 3.11 for two different frequencies. Both calculated and
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Figure 3.9 Photograph of an infrared thermogram for
currents in a plate as induced by a pulsed
rectangular coil.
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Figure 3.10 Comparison of FE solution and measured temperatures for

a pair of current filaments centered above a long
conducting plate (R = 0.071).
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measured data have been normalized. Excellent qualfitative aareement can
be seen for the coil centered above the plate, Fiaure 3,10, and for the
coil near the edae of the plate, Figure 3,11,

Quantitative agreement is difficult because the calculations are for
a harmonic excitation field and the experiment uses pulsed current {in the
coil, This problem is solved by calculating the induced current density,
as a function of freauency, and usina a fast Fourier transform (FFT) to
calculate the induced current as a function of time, as shown in Fiaure
3.12. This data is then inteqrated usina Ea, (3.48) above to calculate
the temperature as a functior of time at the point of maximum temperature
in the plate. Using the maximum temperature in time alona with the calcu-
lated distribution as in Figure 3,12, a quantitative comparison of calcu-
lated and measured temperature were made as shown in Fiaoure 3,10, The
measured value: are about 20% below the calculated values., A comparison
of the FFT result and a subsequent transient analysis result for the same
problem is agiven in sub-subsection 3,3.2.b, In light of this later
comparison, the difference between the experimental result and the FFT
analysis appears to arise partly from the rough calculation in the FFT,
i.e., the cutoff freauency used may be too low and the number of terms
used in the finite sum approximation of the Fourier intearal may be in-
suffictent, The crudeness of the FFT result is also evidenced by the late
arrival of the peak value of the induced current in Fioure 3.12, In the
FFT analysis of the present problem a half-sine pulse of the drivina current
is used, while in the experiment the real driving current has a damped
half-sine var{ation. The major cause of the difference between the calcu-
lated peak temperature and the measured one is probably heat conduction

the effect of which is not included in the calculation., The infrared




Current density, (x (03 amp/m)

-100

{
0
o
o]

Exciting current in coil 1
(51,000 amp pulse) 62A1 67A

L———f 0 =
-A G 0 +A
A =102h
2 i'e 20
t=(ms)

Induced current density
at point G

Figure 3.12 Transient exciting and induced
currents as functions of time.
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picture was taken approximately 160 ms after the pulse was applied. This
may explain the loss of the sharp peak of the temperature curve under the
wire, In sum, the FFT result obtained for this problem is satisfactory
considerina the approximations involved.

e) FE and FTT Methods for Pulsed Maanetic Fields. As discussed
above, the distribution of current in the plate, as well as induced
pressure and temperatures are for harmonic excitation, For pulsed or
transient excitation fields Qo(t), one may decompose the field into its

spectral components

B F(u) = = [ B(t) e'“tat (3.49)

If the induced current is calculated as a function of freaquency J{(w), for

an excitation Boe'iwt, the time variation of current can be found from the
integral

-{ut
J(t) =_l I(w) flw)e™ 9ty (3.50)

The function J(w) {s found by calculatina the induced current for
various frequencies usina the nonlocal theory as shown in Fiqure 3,13,
A polynomial is then fitted to these points over the sianificant frequency
domain of f(w), The Fourier intearal {s then approximated by a finite
sum and the summation carried out using a fast Fourier transform alaorithm,
The resulting time history of current in the plate {s shown in Fiaure 3,12,
From this history the maonetic force and induced temperature histories in
the plate can be calculated. A detailed discussion of the FFT method in

the transient solution of the diffusion equation has been aiven in Chapter

8 of Reference 54,
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f) Effect of Edges on Induced Eddy Currents. One of the immediate
results of infrared scan experiments on induced eddy currents in plates
is the observation that hiah current densities will occur when the excita-
tion field is concentrated near the edaes of the plates, This can be seen
in Figure 3,14a,b, where a coil is moved closer to the edae of a rect-
anqular plate. The results of the one-dimensional program also show a
distinct edge effect for both the paired current filament {induction,
Figure 3.4, and the uniform field induction, Fiaure 3,15,

g) Pressure Distributions Due to Tilted Induction Coils. Both
magnetic forming devices and magnetic levitation devices use current carry-
ing cofls near plate-1ike conductors. The effect of tiltina the induction
cofl has been calculated as shown in Figures 3,16 and 3,17, The increased
magnetic pressure under the filament close to the plate produces a moment
on the plate and a restoring moment on the coil. The effect of lateral
movement of the coil can also be seen in Figure 3,17, and the effect of
lateral movement on the restorina moment can be calculated,

h) Effect of Reduced Matrix Band on Nonlocal Solutions. One
manifestation of the FE implementation of the nonlocal theory is that the
algebraic FE equations become full rather than banded, Nevertheless, the
nonlocal effects which cause this loss of bandina are proportional to
1/r2 in which r is the distance from a self-field source point on the
sheet conductor to the field point in auestion, Fa. (3.34)., One method
of restricting the nonlocal effect at any field point on the sheet would
be to exclude source points at distances from the field point greater
than some cut-off value of r, For a uniformly spaced finite element mesh,
this would yield a banded matrix, but the size of the band would now be

determined by the cut-off distance, The choice of an appropriate cut-off
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Figure 3.14 Photographs showing effects of edges
on induced eddy currents.




"PLOLl§ UOLITNPUL WUO4EUN 404 £330 8bpi pojeynde) gL' g ounbly

N ]

- 21—

103

3
b
(4 ybiy) uorinjos abow S
w T // “
\
(20 = ¥) 1090JUON ~ |
ol 4 N ,__
|
(25 4) 00T 2l !
8 I




104

"(69p OL = 3113 /070 = ¥)
a3e|d bullonpuod HuO| @ 3A0QEe PaUIJUID SJUSWE| L]
JUB4JND 4O AL®d pa3LLy e 03 anp saunssaad d1jaubey 9l g 4nbL4

ysx
09+ ot + 02+ 0 0e- ov- 09
ypi8'6 K3

°1/0,4




G 1 ¥ AU A O

“(63p 0L = I3 “L0°0 = ) d3eld
bulionpuod Buoy e jo abpd 3U0 JUsseBU SFJusBWe Ly
JU244ND 40 Jted pa| L3 & 03 anp saanssaud dijaubey /g 2uanbid

ysx
09 ov 0¢ 0 02~ ov- |

ypi8e y2

ARy

105

Ry

be-

/e,

e




RS

T e LR bast e ose Ao e 25 ctmrig ot L -«_

106

distance will be dependent upon the particular problem, The solution to
the restricted nonlocal problem with an appropriate cutoff distance would
be neqligibly different from the full nonlocal solution, and considerable
savinas in computation would be achieved due to a reduction in the non-
local integrations required, Fq., (3,34).

As a preliminary test of this strategy, the expedient of merely
reducing the bandwidth of the FE equations was utilized by neglectina all
terms outside of selected bandwidths. For the nonuniform mesh necessary
for the eddy currents induced by a pair of external current filaments,
this procedure is not equivalent to the selection of a cutoff distance,

(A finer mesh is required under each filament), Nevertheless, as 11lus-
trated in Fiaure 3,18, the reduction in bandwidth provides a varfation
in the solution that approaches the full nonlocal solution. These results
provide evidence that reduced nonlocal solutions will be efficient and
useful in some situations, Further work will be needed to develon criteria
. for the selection of appropriate cutoff distances and to implement it in
: the computer proaram, For the efficient solution of larae, dense matrix
z. systems, Lachat and Watson (Ref, 81) presented a similar ad hoc approach
for the numerical treatment of boundary intearal equations in three-
i dimensional elastostatics, Jeng and Wexler (Ref, 82) described a successive
! element i{terative scheme in their studies of three-dimensional static field
problems using a boundary intearal equation formulation,
1) Dimensional Analysis of the Size Effect of the Plate. The
numerical results obtained from program EDDY1 presented so far have been
based on a single nondimensional parameter: the maanetic Reynolds number R,

R is defined as R = muoh2 and is related to the skin depth 6 throuah

R = 2(h/6)2, as discussed in connection with Eq. (3.34), For infinite
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plates, except for the qeometric parameters characterizing the positions
of the exciting wires, this is the only possible nondimensional parameter
characterizing the plate., For plates with finite width ¢, the size effect
of the width (span) comes in an another nondimensional parameter charac-
terizing the effects of both the thickness and the width of the plate is
possible, The new nondimensional parameter is designated by Rw and is
defined and related to R as

R, = wuohe = 2he/6” = Resh (3.51)
The role of Rw {s illustrated through the one-dimensional plates with
varyina width/thickness ratio in a uniform, sinusoidally varyina maanetic
field, The analyses with EDDY1 have been performed by Hara (Ref. 83).

Fiqure 3.19 shows the maximum induced current at the edaes of the
plate versus the Reynolds number R usina ¢/h as a parameter., Fiaure 3.20
shows that the different curves can be collapsed to a sinale curve by
using the new nondimensional parameter Rw'

Fiqure 3.21 shows the sum of the moduli of the induced currents
throuch the width of the plate versus R for different 2/h values. Anain,
the different curves can be mapped to one by usina the new parameter Rw
as shown in Figure 3,22,

To determine the total torque and force on a conductor, one needs
to know the real current distribution. Both the real and the imaainary
parts of the induced currents therefore need to be considered (Ref. 33).
Figure 3.23 shows the real and imaainary parts of the total induced
current as functions of the Reynolds number R for two different 2/h

values. The real part a' {is the total current across the width in phase

with the driving maanetic field, the imaainary part a" is the total

current 90 deqrees out-of-phase with the drfvina field. These curves
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Figure 3.19 Maximum normalized current density at the edge
of a plate subject to a uniform transverse field
as a function of Reynolds number R = 2(h/§)¢.
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are plotted in Fiqure 3,24 usina the new parameter Rw' Aagain, qood
correlation is obtained althouah some differences occur at hiah Reynolds

number cases,

3.3.2.b Transient Analysis by Proaram EDDYIT
The transient analys{is proaram EDDY1T has been verified analytically
and experimentally in various cases, The followina is a summary of some
of the results:
a) Comparison of the local solutions with the analytic results,
b) Comparison of the steady state nonlocal solution with the
EDDY) results,
c) Comparison of the transient solution with the FFT and
infrared experimental results of Ref, 102,
d) Comparison of the transfent solutfon and experimental
measurements of eddy currents obtained with a search coil (Ref, 101),
A1l the cases analyzed use the physical parameters of the problem {in the
rationalized MKS system, FEach of these problems is described in more
detail telow,

a) Comparison of the Local Solutions with the Analytic Results, The
loca? solutions of the two-wire problem studied previously with the program
EDDYY(Section 3.3.2.a; Figure 3.10)are calculated and presented in Fiaure
3.25. Since the reaction field is neqlected, the solutfon may be obtained
by direct integration and is the same for each cycle of excitation. A
stainless steel plate is used in this problem, The FEM solutions obtained
with two different time-step sizes do not differ significantly from the

analytic results,
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b) Comparison of the Steady State Nonlocal Solutions with the EDDY]
Results. The nonlocal solution of the same problem with a continual
sinusoidal exciting current is calculated by proaram EDDY1T, Fiaure 3,26
shows that the induced current at point G becomes nearly steady state
after two cycles of excitation. The maanetic Reynolds number in this
problem §s R = 0,079, The modulus and phase anale of the induced current
when it becomes steady state are the same as predicted in Fiaure 3.13.

In Fiqure 3,26b, the maanetic pushina force is shown, and the fact that
its average value is nonzero is clearly evident,

The size of the time step used in this oroblem is At = 0.041 ms, or
one twentieth of the period of the drivina current. Fiqure 3.272 shows
the eddy current distribution at the 53-rd time step when the induced
current at point G is almost at its maximum, Fioure 3,27b shows the
current distribution at the 57-th time step when the induced current at %
point G is nearly zero., Fiaure 3,27c shows the current distribution at |
the 60-th time step (wt = 67) when the driving current in the wire is
zero, Fiqure 3,27d shows the current distribution at the 65-th time step
{wt = 6%n) when the drivina current in the wire reaches its maximum value,
The correspondina magnetic force distributions at these particular time
steps are shown in Fiaure 3,28,

c) Comparison of the Transient Solution with the FFT and Infrared
Experimental Results, The transient eddy current problem discussed in
Fiaures 3,10, 3,12, and 3,13 is re-analyzed usino proaram EDDYIT, The
results are shown in Figures 3,29 and 3,30. The {induced current density
calculated at point G underneath the wire is presented in Fiaqure 3.29

and compared with the FFT result from Ffaure 3.12., It {s seen that the

two results have nearly the same maanftude but the one calculated by EDDYIT
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shows more accurate time characteristics. This {s evidenced by the late
arrival of the second peak of the FFT result which should occur physically
at the time when the drivina current becomes zero. The correct arrival
time of the second peak has been predicted by the EDDYIT result,

The induced temperature rise is shown in Fioure 3.30 and compared
with the infrared experimental results. The infrared picture {s taken
approximately 160 ms after the pulse fs applied, as mentioned in connec-
tion with Fiqure 3.10. The prediction of the FFT result for the tempera-
ture fs also shown for comparison,

d) Comparison of the Transient Solution and Experimental Measure-
ments of Fddy Current Obtained with a Search Cofl. A search cofl
technique has been used to measure the eddy current induced on an
aluminum plate. The arranaement of the experiment is described schemeti-
cally in Fiqure 3.31. To simulate a one-dimensional plate, the measure-
ments were taken alona the central 1ine of a rectanaular plate with
lenath/width ratio approximately eaual to 4.2 (Ref. 101),

To measure the real induced current, the search cofl readinas at
points A and B were first taken using a plastic dummy plate. The measure-
ments were then made at points A and B for the conductina olate. The
induced current densities are obtained by subtractina the readinas obtain-
ed for the plastic plate from the readinas for the real nlate. The search
coil readinos obtained at point A underneath the wire are shown in Fiaure
3.32,

The induced current densities at points A and B so determined are
compared with the numerical results ohtained by usina proaram EDDYIT {n
Fiqure 3,33, The qualitative agreement of the results are acood at both

points. OQuantitatively some differences exist. These auantitative
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Figure 3.31 Arrangement of the search coil experiment fo[*
a long plate, (a) Isometric view, (b) Plan view.




(v

e SREF

125

»

* W HL
AEAMYR
=1 1 ’?“
ANEE
nEn
ARE
T 1 3 13 gi

1RE M

Figure 3.32 For the plate in Figure 3.31:

(a)
(b)

Search coil reading at point A and the
applied current with aplastic dummy plate,

Search coil reading at point A and the
applied current with an aluminum plate.
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differences probably arise laraely from the approximations involved in the
experiment, Namely, each of the two search coils used has a finite lenath
of about 10 mm and finite cross sectional dimension of about 10 mm, The
dimension of *he excitina wire itself is about 2 mm. The measurements
obtained are therefore averaaed values over the 10 mm lenath of the search
coil. One example of this averaging effect in the experimentai results
can be seen from Figure 3.33, The two experimental curves have nearly

the same peak value at points A and B, while in the infrared results and
in all the numerical calculations, Fiqure 3,34, the induced current under

the wire is definitely higher,

3,4 Eddy Current on Finite Plates

The finite element Galerkin formulation and the Fortran code EDDY2 for
two-dimensional problems of steady state, harmonic currents in flat plates
are presented in Section 3,4.,1, The treatment of the nenlocal inteoral
term {s described in some detail, Some numerical results and their verifi-

cations are presented in Sectfon 2,4,2,

3.4.1 Finite Element Formulation for Steady State Problems

The two-dimensional eddy current equation is obtained from Fq.
(2.103) by droppina all the coupling terms, For steady state, harmonic
currents in a flat plate, the eouation may be nondimensionaiized into the

following form,

v2¢ - §27Re + iR J ¢(Esn) drdn = 124R6(x,y)

d Z 3/2
area [(x = E)" +(y -n)" +1] & (3,51)

in which the coordinates are nondimensfonalized with respect to half the

thickness (%); v = (;%)¢e1“t; Bg = (g)ee1”t; the maanetic Reynolds number
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?

, which is related to skin depth & throuah R = ;;-(%) ; and

2
= muoh
is R -

ly

B is the reference maonetic field,

The finite element Galerkin method is used to solve Fa. (3.51). & 1s
approximated qlobally and locally by

6 3

":sz"k ¢ =

t £
5 Nk O (3.52a,b)

nean

k=1
in which G is the total number of nodal points, F denotes the Fth element,
Mk are the quadratic alobal {interpeolation functions aenerated from the
Tocal element shape functions NE. Six-node trianaular elements are used

here. The local element shape functions are all auadratic in this case.

The element alaebraic eaquations are

P o, + 1 ? PE o + 1 S ok, o, = irE (3.53)

w1 Ik %k oy 9k Tk oy dk %k k

in which

KE - 2 NE o nE L aaf (3.58a)

7L i1 k,1 -one
A

E . E E ,AF

pjk = 2nR i Nj N, dA (3.54h)
A

£ _ £

Uy = R M (€sm) Wy (£,n)dEdn (3.54c)
area

Ri = -21R l NEedAE (3.544)

A

The weiahtina function w§ is atven by
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NS (x,y)
[(x - £)° + (y - n)° + 1]

w§(a.n) .
A

g7y dxdy (3.55)

A change of the sequence of integrations in the Galerkin formulation of
the intearal term in Eq. (3.51) has been applied to obtain the weiahtina
function NE. Because of the numerical difficulty associated with the
sharp variation of the kernal function in Eq. (3.55), the weighting
function s calculated analytically within each element and numerically
outside the element, Eq, (3.54c) is then intearated entirely by numerical
quadrature,

The formulation in Fas. (3.54c) and (3.55) is in terms of the qlobal
coordinates throuah the alobal position of the source point (£,n). To
simplify the integration, each element is first mapped onto a standard
trianale through a riafid body translation and rotation, A linear chanae
of scales of the axes 1s then performed so that the standard triangle is
independent of the coordinates of the nodes of the element beina mapped,
and the coordinates of the source point appear only as parameters in the
analytical {intearation, The same form of the integrated result may then
be used for all the elements in the finite element mesh,

Since Ng is quadratic, six basic integrations with numerators 1, x,

2

Y, xz, xy, and y° in Eq. (3.55) need to be performed. These intearated

results are used to form the weighting function, The six fnteqgrations,

the wetiahting function Wg. and the element matrices [KE] and [PE] are

detailed in Appendix B,
The resulting alobal matrix is again complex, nonsymmetric, and fully

populated, Local, nonlocal, and image solutions can be calculated just as

in the one-dimensional case, Eddy currents can be calculated throuah
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numerical differentiation, and maanetic pressure and temperature evaluated
after the stream function {is solved,

A Fortran program EDDY2 has been developed based on the formulation of
Eas. (3.53) - (3.55). It calculates the local and nonlocal solutions of
stream function, eddy current, temperature, and pressure, As of this
writing, the image solution and two-dimensional araphic output capabilities
remain to be implemented, Uniform maanetic field and fields due to any
number of maanetic dipoles can be handled, Magnetic fields aenerated from
other types of coils of interest can be added readily, The capability of
analyzing for multiple frequencies also remains to be implemented,

The geometry of the plate and the description of the external maanetic
field are the two basic forms of data needed by proaram EDDY2, The total
numbers of nodal points, load cases, and elements need to be specified,
Coordinate and boundary condition must be aiven for each input node,
Intermediate nodes may be aenerated for any groups of nodal points that
are uniformly spaced, CElement information may also be agenerated, Although
only six-node triangles are included in the present version of EDDY2, the
program has been structured so that other types of elements may be added.
Element aroup information and the master card for each element aroup
therefore need to be input too,

The program allows for different orders of numerical intearations.
Six- and seven-point formula are now provided. The order may be specified
on the master element qroup card,

Presently two types of maanetic fields may be analyzed: the uniform
field and the magnetic field due to any number of dipoles. For uniform

field no other information is needed, For dipole field the positions and

the relative strengths and senses of each maanetic dipole must be agiven
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subsequently,

Values of the stream function, eddy current, temperature induced in
a half cycle of the current, and time-averaged magnetic pressure are
produced as output. The stream function is calculated at the nodes of
the finite element mesh, Current, temperature, and pressure are evaluated
at the centroid of each element. The stream function and current are
calculated in complex form, The modulus and phase angle of the current
are evaluated in the interest of spectral analysis for the calculation of

transient currents,

3.4,2 Numerical Results and Experimental Verifications for Finite Plates
The two-dimensional finite element code EDDY2 has been verified for
a limited number of problems invelving uniform applied fields., The
numerical results from EDDY2 have been checked with both analytic solutions
and numerical calculations obtained from other methods. Infrared measure-
ments are also used to verify the results qualitatively. More extensive
verifications are needed to check the full capabilities, but comparison
results for fields other than uniform are scarce except for low Reynolds
number (local) cases.
The following objectives have been met with the program EDDY2 up to
this writing,
a) Comparison of Tow Reynolds number results with the analytic
solutions,
b) Comparison of low and intermediate Reynolds number results
for long plate with the numerical results from program EDDY1,
c) Comparison of low Reynolds number results for a square
plate with edge crack with the BIEM numerical results and

infrared measurements (Ref, 102),

>

28

—
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d) Dimensional analysis of the size effect of the width of a
square plate.
Fach of these {s described separately below.
a) Comparison of Low Reynolds Number Results with the Analytic
Solutions. In the low Reynolds number limit one may drop the nonlocal
terms in Eq. (3.51) and obtain the local theory for the stream function

in the two-dimensional case,

v2¢ = {2nRo(x,y) (3.56)

The solution of the above Poisson eauation is a common practice in many
physical problems., For the uniform normal external magnetic field, the
problem is analogous to the torsion of a shaft in the theory of elasticity,
for example. For a square and rectanqular plate in the low Reynolds
number 1imit,the EDDY2 solution has been checked with the series solution
for torsion of rectangular shafts, The agreement between the stream
function and current density in one case and the stress function and shear
stress in the other is excellent,

b) Comparison of Low and Intermediate Reynolds Number Results for
Long Plate with the Numerical Results from Proaram EDDY1. For a long
rectanqular plate excited by a harmonic uniform field with the Reynolds
number R = 0,0012,EDDY2 gqives the stream function contour shown in Figure
3.35, Across the middle section of the lona plate, the nrohblem is
essentially one-dimensional and may be approximated by an analysis with
EDDY1, The close correlation hetween the two calculated induced currents
across that section from EDDY2 and EDDY1 are shown in Figure 3,36.

For the intermediate Reynolds number case (R = 0,2 in EDDY1), the

comparison between the stream functions calculated from EDDY1 and EDDY2
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Figure 3.36 Comparison of one- and two-dimensional solutions
of currents induced across the middle of a long
rectangular plate by a harmonic uniform field
(R = 0.03 in EODY1).




are shown in Fiaure 3,37, The EDDY1 results are obtained with ten linear
elements over the half-width of the plate, while the EDDY2 results are
from a single quadratic element over the same distance,the aareement
between the two should be therefore reasonable considerina the difference
in the discretization,

c) Comparison of Low Reynolds Number Results for a Sauare Plate
with Edge Crack with the RIEM Numerical Results and Infrared Measurements.
The flow of induced current around an edge crack in a souare plate is
calculated using the two-dimcnsional code in the larae skin-depth 1imit
for a few notch widths, A uniform applied maanetic field is assumed in
these calculations. The stream function contours for one case are shown
in Figure 3.38, These contours show the flow of current around the crack
tip. Contours of constant temperature are also shown in Fioure 3,39,

The infrared measurements of the induced ohmic heating on the same nlate
but induced by a wire-source field are shown in Fioure 3,40, The tempera-
ture or JZ hot spot near the edge of the crack or slit is clearly shown,
The same hot spot is predicted in the FE results, Fiaure 3,39, for the
uniform maanetic field.

Quantitative comparison of the numerical and experimental results is
difficult in this problem because of the difficulty in creating a uniform
field within a sufficiently larae reaion with the present experimental
facilities., However, the FE results have been compared with the numerical
results obtained from a boundary intearal eauation (BIE) code developed by
Mukherjee (Ref, 84), This code has originally develoned to solve for
stresses around a crack, The comparison of the stream functions calculated
is shown in Fiqure, 3,41, Close aareement is obtained between the two

numerical results,
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Figure 3.38 Stream function contours for a notched plate
excited by a harmonic uniform field (notch-
width = 2h, R = 0.001).
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Figure 3.39 Isotherms for a notched plate excited by a
harmonic uniform field (notchwidth = 2h,
R = 0.001).




Figure 3.40

Infrared thermogram showing hot spots due to eddy current
flow: (upper) plate without crack, (lower left) hot spot
due to flow around a crack, (lower right) color quantized
hot spot at top of crack (magnified).
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Figure 3.41 Comparison of eddy current stream lines for a notched
square plate in a uniform field computed by boundary
integral equation method (BIEM) and finite element
method (FEM). (Notchwidth = 2h, notch length = 40h,
plate length = 120h).
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The BIEM code used in this problem basically solves the Poisson
equation (3.56). Compared to the proaram EDDY2 in the low Reynolds number
case, it has the advantace that only boundary elements need be used. This
much reduces the number of eauations to be solved, But the extension of
the BIE method to include the nonlocal effect cannot he easily achieved,

d) Dimensional Analysis of the Size Effect of the Width of a
Square Plate. For a souare plate with different width/thickness (D/h)
ratios, the program EDDY2 was run by Hara (Ref. 83). By using
the orfiginal definition of the maanetic Reynolds number and the FE mesh
shown in Fiqure 3,42, one obtains the relations between the modulus of
the current at the centroidal points of the elements versus the parameter
R for different D/h values. The exciting maanetic field is assumed uniform
here. The moduli of the current at all centroid points of the elements
therefore have the same value,

By using a different definition of the Peynnlds number,
Rl= P r=g- P (3.57)
8

one obtains the curves shown in Figure 3,43, At small RI values these

three curves correlate to each other well, but the differences beain to

I

arow as the R* values increase,

By usina the same curves shown in Figure 3,42, but another definition

of the magnetic Reynolds number RII,

= Plr= g (P (3.58)

one obtains the curves shown in Fiqure 3,43, which show a much better

pll

correlation for the high values, However, the aareement is still

not as close as that obtained for the one-dimensional plate, Fiaure 3.20,
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Figure 3.43 Modulus of the induced current density at the element
centroids vs. the modified magnetic Reynolds number

RI = (D/h)R= Dh/(4rs°) for a square plate subject to
a uniform transverse field.
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This rouah parameter study shows that the number of nondimensiona)l
parameters for the finite plate is more than one, and that they are
probably related to each other in some fashion that cannot be revealed
by the simple chanaes of parameter, Ea. (3.57) and (3.58). More detailed
dimensional analysis {is suaaested to study the size effect of a two-

dimensional plate.
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Chapter 4

LINEAR VIBRATION OF IMFINITELY LONG MAGNETOELASTIC PLATES

The magnetically induced vibrations of infinitely lona conducting
plates are considered in this chapter. The plates have constant span ¢
alona their infinite lenath. The excitina maanetic fields considered
are invariant in space in the lenath direction. The eauations governina
the coupled system in this case are Equations (2.104) and (2.106), The
finite element formulation used for analysis is presented in Section 4,1,
The stageered transient analysis is applied to the two coupled equations,
The computational procedure is described in Section 4.2, Numerical
results and experimental verifications are present2d in Section 4,3,

The various couplina effects are discussed in Section 4.4,

The study described in this chapter has been limited so far to small
transverse flexural motion of plates subjected to pulsed maanetic fields,
The in-plane force effects are not included, The total! couplino effects
and the influence of static, uniform maanetic fields on the free vibrations
of the plate are left for future investiacations, The coupling effect

through rotational motion is also left for further studies.

4,1 Basic Equations and Finite Flement Formulation

The governing eaquations for infinitely lona conductina plates subject-
ed to exciting maanetic fields invariant in space in the lenath direction
are derived in Chapter Two and are Eas. (2.104) and (2,106), In this

chapter the coupling effects in the induced vibrations are limited to the

147
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transverse motion of the plate. The governina eauations for this case

are the following specialized versions of Eq. (2.104) and (2.106b):

9 '
32' . 3, ouoh L at v (x") dx’
—5- 9o 3t 2n V4 ¥4
3x (x-x") L h
0 ¥
0
3B
Z 9 (3W L0
=oh (53 - 3% (3; B.)] (4.1)
and
4 2
I W 3w _ 3y 50
o e TR («.2)

In both equations the couplina effects appear on the right-hand side only,
The same finite element formulation procedure as described in Chapter

Three is applied to Ea, (4,1) and results in

1
{A—t [A] - (1-8) [s) } {"’}tmt
_ 1
= { X [A} + 0 [s] } {w}t + 0 {R}t + (1-8) {R}tmt (4.3)
where {R} is aiven by

.’QO

- E. "z 3 w 0 d 44

Rj—ohln,\;f—-a—x(-a-t-sxn X (4.4)

A11 the other finite element matrix and vectors are the same as defined in
Section 3,3.
The transverse deflection w in Ea, (4.2) is anproximated by the usual

cubic model




w =
k=1
where
T
and
¢t er v 2ed - 3 ¢5 = -x (£-1)?
Cg = 362 - 253 CE = -X (62 - £)
with
£ = X/iE

The followina matrix eaquation of motion is ther ohtained

[M] (W} + [K] {w} = {F}
in which

= 3y go
{F} i <y ™ Bx dx
Usina the Newmark intearation scheme (Ref, 10n), one has

(K] (w},... = (F}

t+at t+at

where

{F}t+At = {F}t+At + M (a0 {w}t + 3, {w}t +a, {w}t)
with

2] _ 6 2]
I o Y 47 = At

(4.€)

(4.7)

(4.8)

(4.9)

(4.10)

(4,1Ma)

(4.11b)




1
a3=‘2';‘1,

§ > 0,50 a > 0.25 (0.5 + )

The trapezoidal rule {is used for all the studies with o = % and § = % .

4,2 Staagered Transient Analysis and Computational Procedure

The equations (4.1) and (4.2) may be solved simultaneously in principle.

In that case, the discretized equations will have the followina form

[A] (4} - [s] {v} = (R} = [D] (W}

[M] (W} + [K] {w} = [P] (g}
where
38°
{R} = oh 1 {NE} 7&1 dx
E 38°

[D] = oh 1 Ny 12y B dx + oh 1 Ey 1ef) =2
(] = | tcty Lﬂg— 8O d

x| Py 9x

E

Define a state vector {A} with

() = (o Wy

Eq. (4.12) may then be put into the followina form

(W] (8} + [D] {3} + (K] {a} = {R)

(4.12a)

(4.12b)

(8.13a)

(4.13b)

(4.13¢)

(4.14)

(4.15)
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Eq. (4.15) may be intearated directly to aive the solution simultaneously.
There are several disadvantaaes of the simultaneous solution scheme
however, Besides the inefficiency of the solution of a laraer, unsymmetric
matrix equation, the same finfte element mesh must be used for both sub-
systems for the treatment of the couplina terms, Since a finer mesh
usually has to be used for the maanetic subsystem, this will result in an
excessive number of structural elements for the coupled problems, The
other consideration is the different time characteristics of the maanetic
and mechanical subsystems, Since it is the structural response rather
than the stress wave motion in the structure that is of interest in this
study, one would like to know the range of the frequency of the field with-
in which the mutual interactions are {mportant, At hiaher frequency of
the driving field, one may prefer different time steps for the two sub-
systems because the maanetic force will be more Tike an impulse to the
structure., For these reasons a staagered solution scheme is attractive,
Since the two governina eauations are only weakly coupled, this approach
js feasible and is adanted in this work. Different but conformable meshes
are used for the two suhsystems, The solution state of the counled problem
is advanced by sequentially executina Eauatfons (4,3) and (4,10), The
interaction terms appear in each as an external force effect. Temporal
predictors may be used to calculate these force terms more accurately
(Ref. 85). In the present study, no predictor is used, The accuracy is
improved by usina a smaller time step.
A Fortran program EDDYBEAM has been developed for the linear vibration

of infinitely lona plates, The computational scheme employed is basically

a combination of the transient eddy current proaram FDDYIT and the struc-
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tural analysis proaram BEAM, Different levels of couplino of these two
proarams may be specified in the input., The functions of these nrograms,
which use different but conformahle finite element meshes, is shown in
Fiqure 4.1,

The first phase of the program is the initiation of the two sub-
proarams EDDY1T and BEAM and the specification of the type of couplina,

If the parameter LINK=0, the proaram provides the transient eddv current
calculation only, If LINK=1, the maanetic force calculated on the riaid
plate is used in the structural analysis proaram, The XXQ effect on the
eddy current will not be considered, If LINK=?, two-way interactions are
included and the solution corresnonds to the coupled problem referred to
the initial undeformed position of the plate, For LINK=3, the vector {R}
in Eq. (4.4) is calculated on the deformed position of the nlate at the
previous time step usinn the unit normal vector of the undeformed nlate.
The maanetic force calculated is still applied to the orioinal nosition of
the plate for the analvsis of the structural resnonse. A limited follower
force nature of the maanetic force is then obtained in the analvsis, The
results obtained from the different levels of couplina between the two
subsystems serve to irdicate the relative importance of the various inter-
action effects.

The major computational task is performed by the preoaram ENDDYIT, As
shown in Fiaure 4,1, this computation consists of the time intearation of
the eddy current diffusion equation. At each time step, the induced current
Iy and magnetic force FZ are calculated at each intearation point, The
magnetic forces are then transferred to the structural analysis proaram
BEAM, The maanetic forces are intearated numerically and the effective

consistent nodal force vector calculated to aive the displacement at the




e

EDDYBEAM

1 EODY1T

153

Indicate type of analysis

LINK =0, 1, 2, 3:
Initiate EDDY1T, BEAM

\

Time matching

utl

tUTh = tlat

Update position of the

plate

t | Calculate YxB effect
L
Calculate rate of change
of Bo;
B
Solve for wn+1, Eq. 4.3;
Compute Iy = - J¥/3X,
_ 0
Fz = - IyBx
5 LINK
#0
)
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Eq. 4.10

(Continued)




new time step, The ¥x§ values are then evaluated at the intearation points
bv interpolation. If the chanae of distance between the plate and coil is
considered (LINK=3), the calculation of XXQ is performed at the new position
of the plate. The same alternative is applied to the calculation of the
rate of chanae of the external macnetic field %T Qo. These calculated
values are then used to beain the next time step.

In addition to the input information described in sub-subsection 3,3.1.b
necessary for the transient eddy current calculatfon, aeometric and material
attributes for the structural problem must be input 1f LINK is not zero.
Since a finer mesh usually is needed for an accurate calculation of the
induced current and force, different but conformable meshes may be used for
the maanetic and mechanical subsystems, The conformability of the two
different finite element meshes 1s achieved by dividino each structural
element into several equal-lenath field elements, The number of divisions
may be different for each structural element and must be input as part of
the mesh {nformation.

The same size of time step is used for the calculation of both the

maanetic and mechanical subsystems. A lumped mass matrix is used for the

mechanfcal problem, Initial conditions and mechanical lcads may be {nput
to the program, Mesh aeneration and plottina capabilities for the time
history and spatial varfation of displacement and bendina moment are
provided as optfons,

The output from the EDNYIT portion of the oroaram is described in
Chapter Three, In addition, disnlacement velocity, and acceleration at
each structural node toaether with the bendina moment at specified points
are produced as output of the subproaram BEAM, These are orinted out after

the output of the subproaram EDDYIT for each time step. Displacements and




bending moments may be plotted usino a library subroutine 1f the plotting

optfon is chosen,

4,3 Numerical Results and Experimental Verifications

The proaram EDNYBEAM has been apnlied to the maanetically induced
vibrations of aluminum and stainless steel (SS 304) plates. The properties

of these two materials are listed below.

Material | o (Amp/Volt.m) (N/Ampz) p (NoSecz/malf £ (N/m?) v
7 -7 10

aluminum 3,80 x 10 4x x 10 2.7x 100 7.0 x 10’7 0.3

N

ss 304 1.39 x 105 ar x 1077 8.0x 100 2.0 x 10" 0.3n

The study so far has been 1imited to sinale nulsed currents., To have
sufficient interaction time, the time characteristics of the electro-
maanetic and mechanical subsystems are compared below for cantilever plates.
The information is used to desfan meaninaful numerical and experimental
tests,

Let fn = frequency of vibration of the nth mode of the plate, and
fE = freauency of the drivina current in the coil.

Then

2
12 L S
n P77 n ;;T S Tn , .|

oh.122

—n
1]

2
I /E ) (2.16)
2n 17 Py
tn which E is the effective Youna's modulus for lona plates. Let the skin

depth & be N times the thickness of the plate h,




2 2.2 1
§ = Nh —r

n f Ho
et (4.17)
7 pwo N°h
Matchina the two freocuencies, fn = fE, one obtains
22 = ! N?K 2 U('ﬁ h3 (4.18)
2 7 " o

The lenath and thickness of the nlate for different combinations of mode and
skin depth/thickness ratios are shown in Table 4,1, The followina Kn values
are used in the calculation of the tabled values (Ref, 86),

n | 2 3 4 5 £ 7 8
K, | 1.875 4,694 7,855 10,006 14,137 17.279 20,420 23,562

The freaquencies and half-periods of the oscillations for both the maanetic
field and the structure correspondina to the values in Tahle 4,1 are calcu-
lated in Table 4.2. The problem tested {s determined by choosina suitable
lenath and thickness so that the frequency of the driving current matches
that of the vibratina beam for a selected mode.

The transient eddy current proaram EDDYIT has been verified in Chanter
Three. The structural analysis proaram BEAM has also heen tested for
several dynamic problems., One problem tested is the free vibration of a
simply supported beam subjected to a sinusoidal initial velocity shown in
Fiqure 4,2. With four beam elements for half of the beam and intearation
by the trapezoidal rule version of the Newmark method, the results show
good agreement with the theoretical solution for both choices o€ time
step, althouah for At = T/20 some period elonacation (~ 17) s apparent.

The coupled probiems studied have the aeneral arranaement shown in

Fiaure 4.3 with one excitina wire., One problem analyzed is for an aluminum
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Table 4,1 Lenath and Thickness for Different Combinations
of Mode Shape (n) and Skin Depth (N = &/h)

Aluminum (Ae) :  wo = A7.78 Sec/m’, JETm = 5000 m/Sec
h ¢ (mm,)
(m.) ! on ! ? 3 4
oo n.m 22,92 33.33 as 44 k5,55
|2 27.01 65,62 83,43 111,74 139,08
( 3| eese a3.08 130,62 186,16 232,70
1 b 7} 20,41 an, g7 £1.23 81.63 102,04
2 | 810 102,18 153.28 20437 255.4F
3 I 85 &N 171.00 256,40 381,00 427,40
2.0 1 7} 11,42 Ry 08,26  125.68  157.10
? 78.6€ 157,32 235,08 31464 303,31
3 13163 263,27 304,90 526.53 5816
Bl .

”
SS 304 :  uo = 1,8 Sec/m', J/F7a = S000 m/Sec

h lr ! t (mm,)
AN

(rm,) | n 1 ? 3 4
s 1 | a0 7,88 11.78 15,70 1,63
> o83 19,66 7080 39, 7" .14
o 16,45 12.an 4a_ 34 65. . 8¢.28
2.0 (ﬁfH & 08 17.na 1813 28,18 36,22
2 15.13 30,26 a5 40 60.53 75.66
3 25,32 5n. 64 76.00 101,20 126.61
2.5 1 8.45 16,90 2534 33,70 42,24
2 21.15 82,30 63,44 84.50 10574
35,30 70.78 106.17  141.55  176.0a
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Table 4,2 Frequency and Hx1f-period of Oscillatisn for Different

Combinations of Thickness (h) and Skin lepth (N = &/h)
Aluminum (Ae) : o = A7.78 Sec/m’
* +
h £ (V/sec) / ty (msec)
N
(mm, ) ) 2 3 4 5
1.0 | f 6.66x10°  1.67x105  7.40610°  A16x107  2.66x10°
tq n.075 n. 300 0.675 1.200 1.87¢
2
1.5 | ¢ 2.96x10°  7.4010°  3.20x10°  1.85x100  1.18x10°
ty | 0.160 0.675 1.57 2,707 4,22
2.0 | £ | Lex100 406100 188100 1.08xI07 6L66xIN
tg | 0.300 1.200 2.702 4.803 7.505
sS 304 o = 1.8 m/Sec?
4}
h f (1/sec) / td+ (msec)
N
(mm.) 1 ? 3 4 5
1.5 £ a.88x10° 111100 4.94x10°  2.78x107  1.78x100
ty | 0.00 0.005 0.010 n.0e 0,008
2.0 | £ | 1000 280" 1230 faaxaod  a.eaxie’
L tg | 0.005 n.08 0.041 0.072 0.113
2.5 | f 283108 7.07x10°  3.14x10°  1.77x10°  1.13x10°
ty | 0.018 0.071 0.159 0.283
*f=ff
tty= —JT = pulse duration
2f
Note: fn can be made eaual to f by adjustina the lenath ¢,

' .
paade o &
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Figure 4.3 Long, cantilever conducting plate:
{a) lsometric view, single wire,
(b) Section, single-wire exciting coil.
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nlate with ¢ = 427 mm, a = 335 mm, h = 2,1 om, and e = 8,1 mm, The excit-
ina wire is purposelv placed above the nodal point of the second vibration
mode of the cantilever nlate, Because of the much sharper variation of

the electromaanetic field variables, more field elements than heam elements
are used in the analysis, The meshes of the two subsvstems are made con-
formable by dividina each beam element into several equal-lennth field
elements as shown in Fiqure 4,4a. The freauencies and neriods of the first

three modes of the plate in this problem are:

L 1 2 3]
| ¢ (1/sec) | 0,81 | 50,60 166,87 l

T Loon, | 0.0 L0060 |
’ (sec) l, 1052 N £8 0. 006 |

A half-sine pulse with 3 ms pulse duration and a 500 Amp drivina current
has been chosen. The pulse duration is made eaual te half the nperind of
the third mode of vibration. The results of the analysis are shown ir
Fiqures 4.5 and 4,6 and will be discussed in the next section,
Experimental verification has been attempted on a finite lenath bear
plate with the same cross sectional pronerties and the arranaement of the
excitina wire, This attempt failed, however, because of the small lenath-
to-width ratio of the plate used in the experiment., The size effect on

the eddy current distribution was investiaated experimentally (Ref, 101},

The affected distance from the ends of the plate was found to be about
equal to the width of the plate, A new confiauration that can be better
simulated by the one-dimensional analysis was then desianed, The numerical

and experimental results for this -econd confiauration are described below,
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Figure 4.5 Nonlocal predictions of eddy current density, magnetic

force, and transverse displacement at t = 0.9 ms for
cantilever plate with single-wire exciting coil,
Figure 4.4(a).
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Figure 4.6 (a), (b) Induced current and force under the wire during
the pulse duration, {c) vertical displacement at node 6 :
in Figure 4.4(3) during 1/4 the period of the first mode. ‘




The new plate has a lenath/width ratio about 4.2 and {s shown in
Fiqure 3.31., The dimensions of the new confiauration are ¢ = 149 mm,
a=117mm, h=1mn, and e = 84 5 mm, The transient eddy current calcula-
tion is first verified for this new confiauration using the search coil
technique for e = 11 mm, The results have been presented in subsectfon
3,3.2, For the coupled problem, the finite element meshes shown in

Fiqure 4.4H with e = 4,5 mm are used for analysis. 1In the experiment,

two Tow fnductance strain caaces are apnlied at the position of node 3 in
Fiqure 4,4h, The time history of the bendina moment recorded is compared
to the calculated result as an exverimental verification.
The freauencies and periods of the first four modes of an infinitelv ;

long cantilever plate with this thickness are

N 1 2 3 4 |
; £ (1/sec) 37.6 236 660 1200
b T (sec) 26.6x10°3 | 4.24x1073 | 1.51x1073 | n.77x1073

A In the free vibration test of the actual finite-lenath plate, the same
frequencies and periods have been observed.
Three different pulsed currents are used to study the induced motions

of the plate, The study of pulsed problems has been motivated by notential

&
JESy

applicatfons in magnetic formina, pulsed electric maanets, and structural 1

problems in high eneray devices. The durations and currents of the drivina

pulses are L
Pulse No, 1 2 3
1 (Amps.) 2700 7000 8500 ,
ty (sec.) 5.0x10"3 2.5x1073 1.2x1073 '
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The actual pulsed currents are input numerically into the prooram ENDYBEAM,
The calculated bending moments at the position of the strain caage are
compared with the measured values for each case separately., Fiaures 4.7,
4.9, and 4.11 show the calculated bendina moments for the first, second,
and third pulse, respectively, Fiaures 4,8, 4,10, and 4,12 show the
recorded voltaae readinas from the strain caaes for each of the pulses
used, These voltace readinas have been calibrated and compared with the
numerical results. The discussions of these numerical and experimental

studies of the coupled problems are afiven in the next sectijon.

4,4 Couplina and Nonlocal Fffects

Because of the many aeometric, material, and time parameters involved,
the dimensional analysis of the transient coupled problem is more difficult
than that of the steady-state problem and has not been attempted yet.
However, from the limited number of problems studied in the last section,
some conclusions about the various couplina and nonlocal effects may be
drawn,

The results shown in Fiaure 4,6 for the first problem indicate that
the velocity and displacement of the conductina nlate both have a dampina
effect on the maanetic and mechanical subsvstems, The maanitudes of the
current, force, and displacement have been reduced and their nhases chanqed,
as can be seen in Fiaures 4.5 and 4.6, The dampina also reduces the eneray
transfer from the maanetic subsystem to the mechanical subsystem, The
efficiency of the eneray transfer may be ohtained by calculatina the power
supplied by the current source and the total kinetic and strain eneraies

of the plate., An indication of the influences of various couplina effects

on the eneray transfer may be seen from Fiaqure 4,6c which shows the lona-
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Figure 4.7 Comparison of the numerical and experimental
results of the bending moment at node 3,
Figure 4.4(b), for the 5 ms pulse.
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Figure 4.8 Low inductance strain gage readings for the
5 ms pulse for two different time scales.
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Figure 4.9 Comparison of the numerical and experimental results
of the bending moment at node 3, Figure 4.4(b), for
the 2.5 ms pulse.
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Figure 4.11 Comparison of the numerical and experimental results
of the bending moment at node 3, Figure 4.4(b), for
the 1.2 ms pulse.
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Figure 4.12 Low inductance strain gage readings for the
1.2 ms pulse for two different time scales.




time solutions of the disnlacement at node 6 (x = 330 mm), When the
displacement reaches fts maximum value, the eneray density of the
mechanical subsystem consists entirely of strain enerav, The effects of
the various couplinas in reducina the total eneray density at that noint
is obvious from the fiaure.

The aap distance between the wire and the mid-plane of the plate is
approximately four times the thickness. The skin depth of a steady state
current with the same period will be three times the thickness of the
plate, The small aap distance and the nonlocal effects tend to concentrate
the maanetic force at the nodal point of the second vibration mode, As a
result, the induced motion of the plate consists mainly of the first and
the third modes. The superposition of the third mode on the first mode is
clearly shown in Fiqure 4,6c,

The nonlocal effect is still sianificant in this problem, The non-
zero averaae pushina force can be easily seen from Fiaure 4.6b, A pullina
force is developed close to the end of the pulse, Sinre the time variation
of the maanetic field determines the induced current and force, it is
possible to destan a drivina current to aenerate a laroe pullina force,
instead of a pushina one, on the conductor,

Three different drivina currents have been aprlied in the second
problem, Since the position of the strain cace is far away from the wire,
the effects of the various kinds of couplina are indistinauishahle and
only one curve is plotted for each case. food ocuantitative aareement has
been obtained in all cases. The quantitative difference is small in the
Tona pulse duration case and laraqer in the shorter pulse duratfon cases.

The differences may be partly caused by the flexibility of the clamped

end sunport. The correlation between the numerical and experimental results




is considered acceptable in an experiment of this kind because of the
end effects of the finite-length plate, the nealect of the structural
and rotational maanetic dampina, the finite size of the strain aaoe and
the excitina wire, and the precision of the experimental measurements,
These comparisons verifv the model and the numerical results of the
coupled problem,

The length of the pulse duration has an obvious effect on the mode
of the {induced vibration, In the 5§ msec pulse duration case, mainly the
first vibration mode {s excited as can be seen from the ascillascope
pictures, Fiqure 4.8, As the pulse duration decreases, the participation
of the hiaher modes increases as shown in Fioures 4,10 and 4,12 durina

half the period of the first mode of vibration. Note that in Fiaure 4,11

some higher freauency peaks in the experimental result cannot be represent-

ed in the numerical result, This is because the same finite element mesh

is used for all three pulsed currents. To represent those hiaher freauency

peaks more accurately, more beam elements would need to be included in the
finite element mesh,

A schematic comparison of the pulse duration and the third mode
period has been included in Fiaures 4.7, 4.9, and 4,11 to demonstrate
this effect. More hiaher frecuency modes will be excited as the pulse
duration further decreases. The maaonetic force in this case will act
more like an impact, The nonlocal effect will also be more important as
the short pulse includes more hiah freauency companerts, The nonzero
averaaed pushina force from the ronlocal effect durina the pulse duration
serves as the impact force in such a case.

A quantitative description of the effect of pulse duration on the

induced vibration is difficult to draw from these studies presented, Ore




reason is that the current is voltaae-controlled and a different amourt

of eneray has been anplied for each nulsed current., To studv the effect
of pulse duration on the distribution of eneray trarsferred into different
vibrational modes, the same electromaanetic eneray should be input to the
whole system, and the muteal inductance hetween the plate and wire
considered, A parameter studv of the effect of pulse duration can then

be conducted throuah modal analysis of the vibratina nlate,

An estimation of the effect of the difference hetween the time
characteristics of the two subsvstems on the incduced vihration can be
obtained in the followina sense, The macnetic “orce mav he intearated
durina the rulse duratinr and apniied on the plate as ar impact force,

The mechanical eperay in thic cage will he ecual *o the binetic enerav

in the eaufvalent initial velocity problem, The mechanical enperov in tre
counled problem mav he calculated €rom the kine*ic and elastic eneraies

of the nlate after *the nulse hac heen annlied, Since 4n the very short
pulse case the induced eddv currert will screen the arnlied maonetic finld
out, the maanetic force will act mare like a maonretic pressure as the pulse
duration decreases. The comparison between the two mechanical enercies
thus calculated versu- the ratio of pulse duratien to various fundamental
periods of vibratior mav indicate the effect of pulse duration on the
induced vibrations, A more ricorous study of such e€fects should he hased
on the eneray conversion between the maanetic and mechanical subevsters
hased on the same ener~v input, as described in the last naraaraph.

The studv of the coupled nroblems in this chanter h < beer 1imited
to the case of one excitino wire, The varicus covnlina and nonloecal
effects are of course nroblem dependent and should be 1nvestinated for

nther types of apnlied field, Many different tynes of maaretic field,

.
' .
S et o tinc b, IR S ST

1

:" “’ ks ‘” "m-.‘hql.’i.d



AD=A113 032 CORMELL UNIV ITHACA N Y DEPT OF STRUCTURAL ENGINEERING F/6 12/3
FINITE !L!HNT ANALVII! OF MASNETOELASTIC PLATE PROBLEMS, (V)
AVG 8 K Y Nooou-'n-c-nul
UNCLASSIFIED 81-14

. IHNEEE
l

END

ot
FiLWED




e —

177

however, can be generated from sunerpositions of the one-wire fields.

The study of the one-wire problem thus serves as a prototype for future

studies,
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Chapter 5

NONLINEAR VIBRATION OF INFINITELY LONG MAGNFTOELASTIC PLATES

E The maanetically induced vibrations of infinitely lono conductina
plates with finite deflections but small rotations are considered in this
chapter, Beside the interest in studyina the motion-dependent nature of
3 maanetic forces, such studies may find applications in maanetic forming
or in devices 1ike maanetodynamic circuit breakers., Moreover, aeometric
nonlinearities must be included for {investioations of structural
stability.

The plate and the excitina maanetic field treated have the same

aeneral arranaement as in Chapter Four. The eocuations aovernina the

coupled system now are Eouations (2.102) and (2.66) to (?2.67). The basic
equations and the finite element formulation are presented in Section 5.1,
An incremental-iterative procedure is suagested in Section 5,2 for the

x coupled nonlinear transient system., The implementation of the procedure

in this study, however, met converaence problems because of the interac-
tion between the time integration operator and the approximate solution pro-
cedure for the equations of motion. These difficulties are discussed in

Section 5.3 together with some successful results obtained for static,

e o L

nonlinear elastic problems,

5.1 Basic Equatfons and Finite Element Formulation

The 1inearized eauations of motion aovernina the nonlinear mechanical

system are
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t t,, o teaty t
ftv CaByé €8 Geyé dav + ftv tTa8 s "ag dv R ftv a8 GeaB dv
(2.66a)
t+at t+at t t t+at . t
R = ftA t,su, "dA+ Itv o ( f, - ua) §u  ~dv (2.66b)

A nonlinear beam element developed by Bathe and Bolourchi (Ref, 87) {s
used for the updated Lagranaian (UL) finite element formulation. The
components of displacement increment are approximated by

6

= 1 -
u k§1 he Uy 1=1,2 (5.1)

in which the h: are the interpolation function for the kth node in the
element and the u, are the nodal point displacement increments in the local
axes at time t, FEquation (5.1) fs used to evaluate the 1inear and nonlinear
parts of the strain tensor in Ea, (2.6f) for each element, The formulation
procedure results in the following incremental finite element stiffness

equations

(1% 1+ [y D) (u) = (M2t - (MR (5.2)

in which [tKL], [tKNL] are linear and nonlinear strain incremental stiff-
ness matrices for the confiauration at time t, {t+AtR} is the vector of
inertial effects and externally applied nodal loads at time t+at; and

{tF} is the vector of nodal point forces equivalent to the element stresses
at time t.

The linear stiffness matrix [tKL] s computed as
ty 14 to 1T to 4 t
(7K, ] t, ("8, 1°(C) [7B] “av (5.3)

in which [tBL] js the 1inear strafn-displacement transformation matrix for

the confiquration at time t, and [C] 1s the material property matrix.[tKL]
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{s the same as the usual linear beam stfiffness matrix (Ref, 88),
The nonlinear stiffness matrix [tKNL] accounts for the nonlinear

effect of the stresses at time t and s calculated by
t . tp T t t

in which [tBNL] ifs the nonlinear strain-displacement transformation matrix,
and [txl is the matrix of Cauchy stresses in the confiauration at time t,
The vector of nodal point forces(tF} accounts for the 1inear effects

of the stresses at time t and is computed by
to, . tn 3T, 2, t

in which {t;} {s the vector of Cauchy stresses in the confiauration at
time t,

The vector of externally applied nodal loads {t+AtR} for the confiaura-
tion at time t+at is obtained by the finite element evaluation of Eq, (2.44)
using Eq, (2.66b), The deformation dependent nature of the force is pro-
posed to be treated in an iterative way in the computational procedure.
Details of the varfous element matrices and vectors are presented in
Appendix C.

A moving curvilinear coordinate g s introduced on the mid-surface of
the plate for the eddy current problem, Fiqure 5.1, As a first step in the
study of the geometrically nonlinear coupled problem, the self-field effect

is nealected. Eq. (2,102) in this case becomes for one-dfmensional

problems:
2 280
3y, _tﬂ (xg ) ] (5.6)
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Figure 5.1 Fixed and moving coordinate systems on
the mid-surface of a cantilever plate.
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Figure 5.2 Configurations of a cantilever plate at
three consecutive iteration steps.




in which rn denotes the unit normal vector on the mid-surface of the
deformed plate.
l'sing the Galerkin formulation and the linear shape function aporoxi-

mation

2
£ F
¢ = I N Vo (5-7)
k=1 K K

one may discretize Eq. (5.6) into

E E
= Sk Y = P (5.8)
in which
E E
de

dN
S%k = Z a-c—l-—c—- d( (5.03)

Pg = oil l Ng (8D + 5= (1), de (5.9b)

After the stream function is solved, the maanetic body force s calculated

from

t teat. _ 3y 0 Y 0
e f=-wBhse*wBe (5.10)

This expression is used in Fq. (2.66b) for the calculation of the externally

applied load vector {t+AtR}.

5.2 Staagered Transient Analysis and Computational Procedure

Except for the deformation-and velocity-dependent maanetic force, the
solution of Eq. (5.2) may follow the standard incremental fterative pseudo-
force procedure (Ref, 87), With an implicit time integratiorn scheme, this
involves a calculation of the unbalanced force and an jterative procedure

to achieve the equilibrium amonq the fnternal element stresses, the
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externally applied nodal point loads, and the fnertfia force at time t+at
(Ref. 89), For deformation-independent loads, such a procedure is strafqht-
forward, For some types of follower forces, such as pressure loadinas, a
load stiffness matrix mav be added to the tanaent stiffness matrix to
account for the deformation-dependent nature of the force (Ref. 90), For
the deformation- and velocity- dependent maanetic force, this approach is
not applicable, In this work, an updated calculation of the magnetic
force within each pseudo-force {teration step is sugoested to achieve the
simultaneous satisfaction of both the eddy current eauatfon and the eaua-
tions of motion, The procedure for this calculation is described below.
Consider the state of motion of the plate at j-th {teration shown in

Fiaure 5.2, The maanetic force has been calculated based on the motion of

T % A e e 2, AR 2OV e TR w7 e 1 a0 pe

the plate at the j-1st iterative step and applied to the confiouration of
the plate at that step. If the unbalanced force calculated {is such that a
prescribed converaence tolerance is violated (Ref, 89), the eddy current

equation 1s solved again based on the motion and position at the j-th

e e TR

iterative step. The unbalanced force is recalculated with this newly

calculated maanetic force and applied to the confiouration at the j-th

iterative step, The same nonlinear stiffness matrix [tKNL] and nodal force

vector {tF} are employed in each iteration. The procedure is continued

until the tolerance is satisfied, 1.e., until the error in equilibrium or j
the change in incremental enerqy 1s acceptably small (Ref. 80),

The trapezoidal rule version of the Newmark method (Ref, 100) is used

Rt T e

to integrate the eaquatfons of motion, A auasi-Newton method is used for
the fterative procedure (Ref. 89), A force and/or eneray tolerance is

used for converaence checks (Ref, 89), The incremental fterative comouta-

tional procedure 1s summarized in Table 5.1,
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Table 5.1 Summary of Incrementai-Iterative Intearation Procedure

Initial Calculations

1. Form the Tinear stiffness matrix [KL] and mass matrix [M]; inftifalize

2:

{OU), {oﬁ}, {06}; form the field matrix [s].

Calculate the time~inteqration constants and converqence-tolerance

constants, Newmark method: 6=1.0, §=0.5, a=0.25
ag = Viant?) gy = a/(aat)  a, = V/(aat)  ay (201
3y = 8/a -1 ag = at(8/a -2)/2 ag = a, 2y = -a,

ag = -a5 g = At(1-8) ajq = 8st.

Force tolerance : ftol = 0.1 (unless otherwise noted)
Eneray tolerance : etol = 0,001 (unless otherwise noted)

Form the effective 1inear coefficient matrix [ﬁ] = [KL] + ao [M],

Each Time Step

Calculate the maanetic field at the new position and form the field

t+at

vector { P}; calculate the vector of nodal print forces {tF}.

Solve the eddy current eauation (5.8) and calculate the induced
current and force on the plate.

Intearate and transfer the maanetic force to the structural proagram
and form the load vector (t+AtR}.

Update [ﬁ] for noniinear stiffness effects to obtain [tﬁl =
[K] + (*ky, 1, and trianaularize [%R1: (%K) = [1) 10) TL)T.

Form the effective load vector {t+AtR}:

MRy = Ry e e (M%) - () s I (o) (B 4 e, (b - (MY

NIRRT TR 1v 3ol i ar aavase ol
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Solve for the displacement increment {u}.

1f required, iterate for eauilibrium as follows:

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(h)

Calculate new displacements, velocities, and accelerations

(A0 = ag (0} + o, (M0 4 ag (U}
(Mt = oy . ag (ty + 2y, ()
ALL R L Rt

If required number of time steps have been calculated, stop; otherwise,

go to 1.
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fnitialize: =0, (u{®))= (u)

=i

interpolate the new displacement and velocity and transfer to
eddy current proaram,

calculate the maanetic field at the new position at the same
time step and solve for the maanetic force,

intearate and transfer the maanetic force to the structural
proaram in form the unbalanced load vector (A t+At§(j)}

solve for the j-th correction to the disnlacement increment

{a u(j)} and update the displacement increment

POL DRI 6 £ D PSRRI 6 )

check iteration converaence: || (A t+At§(j)}l!2//H {ﬁ}” :ax < ftol,
and/or (n uldyTea HARU-T)) £ (n WYTERGROD) eran,

if converaence {u} = {u(J)} and go to 8;
if no converagence and 1imit on number of jterations not exceeded,
ao to (b); otherwise, stop the proaram with a messaae to restart

usina a smaller time step size.




A Fortran program BEAMNL has been developed for the mechanical part
of the problem based on the formulation and computational procedure
presented., Some geometrically nonlinear static problems have been solved
successfully usina the proaram BZAMNL, but the iteration procedure for
geometrically nonlinear dynamic problems experienced some converaence
difficulties, This converaence problem and some limited results obtained
are discussed and presented in the next section, The present version of
the proqram BEAMNL is briefly described below.

BEAMNL is desianed to analyze linear and aeometrically nonlinear
static and dynamic problems of a linear elastic beam nlate. The type of
analysis may be specified by the input parameter NANTY. For noniinear
problems, the Newton Cotes quadrature formula is used to calculate the
element stress vectors {tF}. The order of the auadrature formula may be
specified in the input data. One load case for a sinale type of analysis

. is handled at each run,
Geometric, material, and load information need to be input to the
program, The number of incremental solutions and number of iterations

allowed must also be specified for the nonlinear problems, Time inteara-

tion constants and converaence parameters also need to be fnput, The

{nitial conditions may be specified, if any, (input data IGIVNED) for the
' dynamic problems,
N Displacements, velocities, and accelerations are produced as output
of the program. The number of iterations at each {incremental step is
; also printed out for reference, No plotting capabilities are {incorporated

yet,
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5.3 Convergence Problems and Some Limited Results

The linear part and nonlinear static part of the proaram REAMNL have
been tested and verified through comparisons with analytical and experimen-
tal results. One of the nonlinear static problems studied is the larqe
deformation analysis of a cantilever subjected to an end moment, shown in
Figure 5.3 (Ref, 87). Five beam elements are used for this problem with
Newton Cotes formula of order three in both the lenath and the thickness
direction of the element. Seventy incremental steps are used with equili-
brium iteration. The force and eneray tolerance used are 0,1 and 0,001,
respectively., The calculated response compares well with the analytical
solution within the range of the moment parameter n shown in the fiaure,
fiood aareement with the analytical result is expected for even larager
values of n. Note that in this problem there is no couplira between the
axial force and the flexural deformation since it is a pure bending problem,

The second problem studied is the large deformation analysis of a
cantilever subjected to an end load, Fiaure 5.4, Seven beam elements are
used with the mesh finer in the region closer to the support., The deflections
of the beam at different load levels are shown in Fiaqure 5,4, The curva-
ture at the root of the cantilever beam is shown as a function of load in
Fiqure 5,5, The theoretical and experimental results are from an unpub-
Tished study by Pao and Moon of Cornell University. The FE analysis
predicts deflections accurately for tip deflections up to about 60% of
the cantilever span, corresponding to a loading parameter f of nearly 2.0.
The curvature s accurate up to about f = 4,0, Note that in the analytic

results the beam is assumed inextensible, while in the FE results the

effect of axial deformation {s {ncluded.

NP N
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Figure 5.3 Moment deflection curve of an elastic cantilever
plate loaded by a moment at its tip.
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Figure 5.4 Comparison of FE and theoretical predictions of the
nonlinear elastic bending deflections of a tip-loaded

cantilever beam.
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Figure 5.5 Comparison of theoretical, experimental, and FE
results for the curvature at the root of the
cantilever beam shown in Figure 5.4.
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Strona couplina between the ax{ial force and the flexure deformation

exists in this problem, When the loading parameter f becomes areater than
2.5, the behavior of the deflected heam becomes more like an arch., Slow
convergence of the iteration scheme occurs for this situation, At laraer
values of f, convergence fails with the present quasi-Newton method,
Stronger converaence tolerances with ftol = lxIO'd and etol = 1x10'6

have been used for this structural stiffenina problem, and a srall time
step is needed for converaence (Ref. 89),

Geometrically nonlinear analysis has been attempted for the large
amplitude free vibrations of a simply supported beam, The purpose of the
analysis is to establish the frequency-amplitude relationship of the heam
and to compare it with the analytical result (Refs,01, @2), This studv is
not successful because the iteration scheme fails to converae within each
time step. The numerical experience shows that the lack of converaence
arises from the high frequency axial vibrations of the beam element, The
large axial forces developed from these axial vibhrations cause an increase
of the unbalanced force during the iterative procedure, Attempts have
been made to separate the inertia force effect and the effect of the linear
approximation to the nonlinear equations in the calculations of the ur-
balanced forces, but with the present quasi-Newton scheme all the attempts
failed because of the intrinsic interaction of the time intearation method
with the approximate solution procedure for the eauations of motion,

A quasi-Newton method and structural (i.e., one-dimensional) beam
elements are used in the nonlinear dynamic analysis in this work, A
literature survey reveals that fer transient nonlinear analvsis all the
works surveyed (Refs, 93 - 96) whici. use continuum (i.e., two-dimensional

plane stress) elements adopt either a quasf-Newton or the full Newton
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method for {teratfon, Transient nonlinear analyses usina structural elements

usually employ explicit time intearation schemes (Ref, ©7, 98)., Studies
which use structural elements tooether with an implicit intearation scheme
and quasi-Newton method for iteration have not been found,

In transient nonlinear analysis the dynamic properties of different
types of elements have a definite effect on the success of a particular
solution method used. Efforts to use implicit intearation schemes with a
quasi-Newton method for iteration appear to be futile. It is suaaested
that the full Newton or the BFGS method (Ref. 99) be used for the iterative

proceuure in the future.
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Chapter 6

CONCLUSION

This thesis has presented an integrated study of the magnetically
induced vibrations of nonferrous conducting plates. The continuum
mechanics basis, the stream function modelling of the coupled problem,
the fntermediate eddy current calculations on rigid flat plates, and
the 1inear vibrations of infinitely long plates have been discussed in
some detail, Some preliminary studies of the coupled nonlinear problems
of infinitely long plates have also been presented., A summary of the
work piresented in this thesis is given below., Conclusions from the
present study are then drawn., Some suggestfons for further research

are made at the end of the chapter,

6.1 Summary

The thesis contains three main phases: theoretical modelling of the
magnetoelastic plate, finite element eddy current calculations on rigid
plates, and finite element numerical studies of coupled maanetoelastic
problems, The numerical results obtained have been compared with analytic
and experimental results at each stage of the study. The physics and
continuum mechanfcs background of the problem has been presented in
Chapter Two. The magnetic force-field method has been chosen to formulate
the coupled problems, The magnetic force-energy method (Ref, 25) has not
been emphasized, although the energy transfer between the magnetic and

mechanical subsystems has been briefly mentioned fn Chapter Two, and the

g e IE TR N A




194

magnet{c energy-circuit method for eddy current calculation discussed in
Chapter Three.

The modelling of plate problems by the stream function method has
been presented in Section 2,3, All the simplifying assumptions have been
carefully examined and the Timitations of the stream function method in
the large deformation cases analyzed. The governina equations for the
magnetic and mechanical subsystems have been der{ved and the various
coupling effects discussed, The assumption of constant magnetic body
force across the thickness of the plate and the neqlect of the magnetic
damping moment have also been discussed, Both linear and nonlinear prob-
lems have been studfed, Al1 the equations have been linearized to the
first order of the various unknown variables. The updated Lagrangian
description of the magnetic subsystem and the approximations involved in
the 1inearization procedure have been given special attention,

Eddy current calculations on rigid conducting plates have been pre-
sented in Chapter Three, The FE Galerkin formulations and the treatment
of the integral terms in the eddy current equations have been presented
in detafl, Comparisons of the numerical results with the infrared and
search coil experimental results have been made. Analytical solutions
in the Tow and high magnetic Reynolds number 1imits have also been employ-
ed to verify the numerfcal results. Detailed studfes includinag some
dimensional analysis have been carried out for the steady state and
transient eddy current problems on infinitely lona plates. For finite
plates, only the steady state analysis has been formulated and performed,

Chapter Four treats the linear vibratfons of infinitely long conduct-
ing plates excited by single pulsed currents, The types of coupling

studied have been 1imited to the effects of the transverse motions of the
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plates., The staggered transient analysis and the computational procedure
have been presented in detail, The calculated moments have been compared
to experimental values obtained with low inductance strafn gage readings,
The effect of pulse duration on the {nduced vibrations and energy transfers
have been demonstrated through the three pulsed currents studied, The
results show that as the pulse duration decreases, the nonlocal effect
becomes more important and the magnetic force acts more like an impact
load, A quantitative description of the effect of pulse duratfon on the
induced vibratfon has not been presented because the control condition of
the driving currents does not readily permit equivalence of the input
energies in the three problems studied, A rough method has been suggested
to estimate the effect of pulse duration on the contribution of nonlocal
pushing force in the mechanical energy converted, The effect of the
difference in the time characteristics of the two subsystems on the induced
vibration may then be represented quantitatively.

The induced nonlinear vibrations of infinitely long plates have been
formulated in Chapter Five based on the linearized equations for the up-
dated {ncremental analysis procedure, The staggered transient analysis
and the computational scheme have been presented, An iterative procedure
has been proposed for the motion-dependent magnetic load. Some preliminary
results for the nonlinear static problems have been presented, The
convergence difficulties in tke nonlinear dynamic problems have been
discussed and some suggestions made for the improvement of the iteration

scheme used,

6.2 Conclusions

The following conclusions may be drawn from the work presented:




1. The stream function method presents a useful tool for the eddy current

calculations on thin nonferrous conducting plates in the Tow and intermed{-
ate frequency cases. The capability of this method for curved surfaces is
1imited to small curvature situations., This method has a close relation-
ship with other eddy current circuit models. The advantages and dis-
advantages of the different methods need further comparative studies.

2. From the experience of using the Fortran programs developed, the EDDYI]

and EDDYIT codes appear to be reasonably efficient. The EDDY2 code takes
more computation time because of the complicated forms of the weighting
functions for the six-node triangular elements, The efficiency of the
EDDY2 code can be greatly improved by using rectanqular elements and/or

11inear trianqular elements. The weighting functions for these elements

can be easily integrated or obtained from the weightina functions for the
six-node triangular elements presented in Appendix B, H
3. The modelling and formulations for the 1inear coupled problem in
Chapter Four have been verified satisfactorily through comparisons with

low inductance strain gage experiments, The velocity and displacement

have a damping effect on the coupled problem, The total eneray transferred
to the conducting plate 1s reduced because of these motional effects, but
their influence seems to be small for the problems studied, The pulse
duration has an effect on both the magnetic force and the induced vibra-
tions. For the short pulse an impact approximation based on the nonlocal

pushing force will be reasonable,

*. The quasi-Newton method cannot be used in the fterative procedure together

with the structural elements in the transient nonlinear problems, The

fictitious in-plane deformation caused by the simplifying assumptions in

the structural theory creates large fn-plane {nertia forces which make
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the convergence of equilfbrifum {teration difficult when the quasfi-Newton
method {s used, The simplifyina kinematic assumptions in the structural
elements have a definite influence on their performance in transient non-
1inear analysis. The full Newton or a BFGS method should be used for
these problems {f structural elements are to be used, The study of the
induced nonlinear vibratfons of conductina plates cannot proceed until

these numerical problems are solved.

6.3 Suqgestions for Further Research

The following suggestions are made for future work:
1. For the immed{ate continuation of the present work, it is suggested
that linear elements be implemented in the proaram EDDY2 to achieve

better efficiency of the computation; that the effect of pulse duration

on the enerqy transfer and induced vibration of infinitely lona plates be
studied in more depth; and that the full Newton and BFGS methods be tested
for the transient nonlinear problems to enable the continuation of the
study for the induced nonlinear vibrations of conductina plates.

2, The eddy current circuit nature of the stream function formulation
should be explored to enable a modal analysis of the eddy current and the
coupled problems, The maanetic energy stored in various eddy current modes

and {ts conversion into mechanical energies in different vibrational modes

: of the plate should be calculated §n such a modal theory for the coupled
problems. The modal study of the coupled problem described basically is

equivalent to the maanetic force-energy method discussed in Reference 25.

3. The in-plane force and the magnetic damping moment should be included,
and their effect on the induced vibrations and stability of the conductors

studied, Different types of magnetic fields, such as transverse or inclined
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uniform fields, should also be investigated,

Cyclically pulsed currents and their effect on induced vibrations
Heat conduction

4.
should be studied for possible maaneto-flutter effects,

and thermoelastic coupling in such casesmay be important and may need to

be included in the analysis,
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APPENDIX A

MATRICES AND NONLOCAL INTEGRATIONS FOR ONE-DIMENSIONAL PLATES

This appendix presents explicit finite element matrices including the
analytic expressions for the nonlocal intearation terms described in sub-
subsectifon 3.3.1.b for the transient one-dimensional problems., The
matrices and expressions for the steady state problems described in sub-
subsection 3.3.1.a may be obtained from these by setting h = 1, oy = R,

and by replacing X and X' by the nondimensionalized quantites x and &,

E 1 1 -1
(sf = (A.1)
e[ 1]
(PEy = o L [ 173 /6 (A.2)
1/6 1/3
W = %F tn ((x'-XD? + £ 021 - an ((x0-xE)Z + 2]y (A.3a)

- %g (X'-Xg) {tan”] [%’(X'-XE)] - tan”) [%-(X'-Xg)]}

{n [(x'-x§)2

. ]} h2] - n [(x'-xg)"’ + 1 he) 4 (A.3b)

=
N m
]
1
N"J:r
-

+ 5 o) on! G 00 < g™t i (D)

E

in which the superscript E denotes the Eth element, L~ the length of the

element, and XE and Xg the coordinates of the two end nodes of element E,

as shown in Fioure A,1,
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The nonlocal integration Eq. (3.41) is performed element-wise and
calculated over all the elements for each element E. For any element G,
the contributions to the nonlocal integratfon of element E are, Figure

A1,

XG
EG [+] ZNG(u 3 xl)dl k-12 x
ij - ‘2“"' [ k X ) uJ ( X', Ju ’ (A.4)

G

X

The resulting analytical expressions of these integrations are:

E6G_1 o E,G
Q]] 1;'[Ef§ { 2™l +

R % (- (x?-x%)z + (x?-xg)z + (xg-xﬁ)2 - (xg-xg)z] .

? 2
+ 3 e (5xHZ -2 065y oGy (082 4 By s
Z 2
+ 5 - 0852+ 2 05-E) (8-xE)) an (0BxE)Z 4 By s

2 2
» 3+ 0657 - 2 G an (0662 By

2
B85 U5 i (08}

2 6 (E\3 tE, ,G G E\2 E G Ey\/yG E

2
-3 o) (B (8-x6)

2
# 1= 50857 - 205 0657 + 3= 05001 tan” B 055
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2
v 3 0GB -2 xh? 05y + 0501 tan™! (B (G-x))

2
+ 1208631 086 tan! (B 05-x5) )

ou G

o SRS f
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+ 2 10ENZ - 08x0)? - (655 Z + (x5x)?y
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2
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APPENDIX B

MATRICES AND NONLOCAL INTEGRATIONS FOR TWO-DIMENSIONAL PLATES

This appendix presents the fintte element matrices and the analytic
expressions of the nonlocal weighting functions described in subsection
3.4.1 for the steady state two-dimensional eddy current problems. The
nondimensionalized finite element equations are those presented in Eq,
(3.53).

By using the natural coordinates L]' L2, L3 for the six-node tri-

angular element shown in Figure B,1, one may write the shape functions N1

as:
N3 = L3(2L3-1) N6 = 4L3L]
in which
gL1 2 3y by ¢ 1

LZS . %K 2, b2 <, X (B.2)
2!.3 2, b3 C3_] y

3 % X441 Yi41 T X442 Vi

by ® Yia1 = Yie2 {e1,2,3 (B.3)

€ % %42 T Y0
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Element E
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Figure B.1 Six-node triangular element in
global coordinates.

Element E

Figure B.2 Translated and rotated coordinates
used in nonlocal integration.
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A= ,} (X¥s * Xa¥y + X3V = Ko¥y = Xg¥p = XyY5) (8.4)

The matrices [K] and [P] 1n Eq.(3.53) may then be integrated to obtain

3 1

-1 6 symm,
Py =g | -1 -1 6 (B.5)
0 0 -4 32

-4 0 0 16 32
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is referred to a new coordinate system (s, t) obtained by the following

relatfonship, Figure B.2,

] \s) cos 8 sin o gx-x']z 2

To integrate the weiahting functions “5 fn €q. (3.55), the element

- (8.7)
(t\ -sin @ cos © (y-yg \ |
k . |
\x) cos 6 -sin ¢ ‘s) gﬁz f
] - + (8.8)
(ys sin 6 cos o (ts (yss
Under this transformation,
[(x-£)% + (y=n)? + 1132 = [(s-5")2 4 (t-t*)2 4+ 1)3/2
Ly = 1-u-(1-c)v, Ly = u-cv, Ly=v (8.9)
in which
u=s/a, vst/b, c= s5/a (8.10)
The six weighting functions H§ may then be written as
E 2
Wy=ab(I;-3T1 - 3(1-c) I, + 21, 4(1-¢c) Iy * 2(1-¢) Iw]
! Weaab({-1 +c1 +21 -4cl_+2°1.)
; 2 u v uu uv v
WEe=ab[-1 421 ]
; 3 v W
'
! £
W, = 4ab “u -C Iv -1 wt (2¢-1) Iuv + ¢(1-c) IW]

u
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E

Ws

= 4ab [Iuv -cl ]

vv

wg = dab (1 -1, - (1-c) 1] (8.11)

1 1 ,and 1  are:

in which the six basic inteqrations I]. Iu. I w* Tuy W

v.

L . I dA
1 o2 (u-u" ) 262 (v=v') 2011372

n

=35 ( tan'] [bz(l-v')(u'-cv')+c] .
. izbz(u'-cyi)?:;féz .
ngbz(l-v‘)(u'-cv‘)+c]2+b (u'-c)[a“b (u'-cv')2;$2;!+b2]

+ tan'] [bzv'(u'-cv')-c] .

./ azbz(u‘-cvj)?:gzgzﬁi +
EZEV-bZQ'(u'-cv‘)j2¥b2u'2[;252(u‘-cv')2+ 2 Zap2

a“ct+b]

¢ tan”! 2(1-v' ) [1-u'-(1=c)v' 1+(1-¢)} -

2,2 12, .2 4
. b [1-u'-(1-c)v'] +2 gl-c)
/435 W LA TR S

bz(l-v')[1-u'-(1-c)v']+(1-c)} +b(c-u' ) {a Db [1-u'-(1-c)v' 1+a(1-c)“+b")

+ tan”! (0% 1-u'-(1-c)v' 1-(1=c)) -

a2 ¢ az l-g)? )

a“b [l-u'-(1-c)v']"+

//§7f(1-c)-b7}'[1-u'-(1-c)v'1} a2 (1-u (2% [1-u"=(1-c)v' 1“+a’(1-¢)%+b°) \
(8.12)




[ = I u dA .
u [a?(u-u' )2+b2(v-v' )2+1 ]3/2

1 1

a2 a“c+b azv'ai(’l-c)2+b2

= u'I1 +

[ = [ v dA .
v [az(u-u')2+szz;-v')2+1]372

= y'l -_—L_._K - 1-c K. + ! K (B 14)
1 1 2 23 .
b2/ aZceb? b2/ a%(1-c) 242 2b
[ = J ?pz dA .
uu [az(u-u') +b2kv-v')?;1i§7?
= (u' - 170 I + g_(92c2+b2)u'+a2c2(u'-cv’)K1 .
a az(a2c2+b2)/ a2c2+bz
o 2202°0-0) 2 +a?(1-0) 2010 - (v |,
2
az[az(l-c)2+b2]/ 32(1-c)2+b2
+[u. +v.]K +—2-—2-TTC K #T—z-l-—c—-z-—f—K B.15
;2;. ;3. 3 a%(a%c+b”) 4 a“[a“(1-c)+b°) 5 ( )

[ = [ uv dA .
uv (82 (u-u' ) 24b2(v-v" ) 2411372
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. u'l + azcu'+b2v' az(l-c)(1-u')+b2v'

K. -
v 1
az(a2c2+b2)/ a2c2+b2 az[az(l-c)2+b2]/ a§(1-c)z+b?

KZ +

*"7‘*1?1?‘"2‘ K - ! K (8.16)
T .
a“(a“c +b%) 4 a“fa”{1-¢)“+b") 5

[ . l v dn .
W P eun el (vevt) 2y

. (V.Z - 12) 11 . bz(u'-cv')-Z(a2c2+b2)cv' K‘ .
b bz(a2c2+b2)/ azcz+b2
o D20-u' = (1-0)v' 1-20a(1-¢)%4b%) (1-¢) ' -
2
b21a2(1-c)24b21/ a2(1-c)2bl
+ 2y s = 5597 K¢ - T ks (8.17)
\ ab b (a“cc+b) b [a“(1-c)“+b]
in which
€ = tn /(2 Fe?) (a2 (0 ) b2 (v 1) 21 - ale(u’-)-b2(v'-1) (5.18)
./(azc2¥b?;(a2u'zzbzv'2¢1) - azcu'-bzv'

! K, = tn /10 P71 (a7 (o - e b 1) %] ¢ aP(1-c)(u'=c)-b2(v' -1}
[ 1a2(1-0) 21 (a2 (1) 2ob8v 201 - aZ(1-c) (1-ut)-b2y?

(8.19)
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/ a%(u'-1)%4b%v* P41 - a(u’-1) (B.20)

3°
v/ azu’2+bzv'2+1 - au'

K4 = ai(u'-c)2+b2(v'-1)2;l - J/;zb'2+b2§'2+1 (8.21)
K = /21w )22 201 = /2l (cmu')oab2 (v 1) 241 (8.22)

The nonlocal matrix [Q) fs calculated numerically by using these six
analytic expressfons of the wefghting function H§ within each element.
Pure numerical i{ntegrations are used to evaluate the nonlocal integrations

for (u',v') outside the element.
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APPENDIX C

MATRICES AND VECTORS FOR NONLINEAR DYNAMIC ANALYSIS

This appendix summarizes the matrices and vectors for the finite
element UL transient nonlinear analysis described in Section 5.1. Details
of the derivations are given by Bathe and Bolourchi (Ref., 87).

The interpolation functions for the components of displacement

increment in Eq. (5.1) are

r s r S
\”1) 1-T 6%y -S¥; [ -6¥ S¥;
= {u} (c.1)
(“2\ 0 vy Lig 0 v -T¥y
in which
{u} = 131 Uy ug Uy Ug UQJT (c.2)
2 2
r r r r
‘9]"["('[)9 ‘1’2’1'4‘E+3(r)
2 2 3
=0T r = 1. r r
v3=2p-3(p, b= 1-3(p +2(p (C.3)

2 3 2 3
ve=t-2@ +@ ., =3 -2 ;

: and in which L {s the length of the beam element, r, s are the beam convect-
i - ed coordinates, Figure C.1, The shear deformation is not included in this
approximation.

¢ ‘ The linear strain-displacement transformation matrix [tBL] relates

V. the 1inear part of the strain components to the nodal degrees of freedom
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Figure C.1 Convected coordinates and degrees of
freedom of beam element.

Figure C.2 Current and original local coordinates
of beam element.




The linear stiffness matrix [tKL] is calculated from Eq. (5.3) using

L
t
[B]=
L 0
(ts
[ A
T
0
t
{ KL] = £ 0
_A
T
0
0
The matrix
[~
M
[t1]= 0
Lo

S rs LS rs 1 S rs ,S ,rs
RS R TS A

L L

{u}
0 0 0 0 0

L] given above and {s the same as the usual linear beam stiffness matrix:

—
121
—F Syﬂlﬂ.
61 41
? |
o o ¢
L) S SN )
32 X
61 21 , _6l Al
?Z' | E?' T

of Cauchy stresses [,1] in Eq. (5.4) in this case is

0 0
711 0
0 0

(C.5)

(c.6)

(c.7)




218

The nonlinear strain-displacement transformation matrix [tBNL] is

t
Byl = [byylagg

1 s rs .S 1 S rS oS IS 7
- -1258 - 635 #1253 23 .
YGF L3 &L-ft 6[7 N
s 05£+"21."+"206-'- r’ 2"+‘"2 (c.8
-LZGF ‘r L Lz"’;}'tﬁ’z -8
0 61.2-6--2jr -1 +4-'1-}"; 0 -652 +s£; 2"-3-'-;
i e L7 2 3T L* |

The nonlinear stiffness matrix [tKNL] in Ea. (5.4) {s obtained using [tBNL]

given above and is shown in Eq. (C.9). The Newton-Cotes quadrature formula

is used to {ntegrate [tKNL] numerically.
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The vector of Cauchy stresses {t;}.in Eq. (5.5) is
Gth =ty T () (€.10)
t L' i .

in which \2Y) has been set to zero. The Newton-Cotes formula fs also used

to integrate the vector of nodal point forces (tF) given below,
)
mf-p
s rs
RN

A N RN -sf%) dv (c.1)

1
it

S rs

(2 ‘Gf%)

The element stiffness equations must be transformed to qlobal coordinates
before they are assembled into a set of global equations. The transformation

matrix from local to global coordinates is

(tr) - [ti] (OR] (C.12)

in which [°R] is the transformation matrix from the original local coordinates
of the element to the global coordinates, and [tE] is the transformation
matrix from the current to the original local coordinates of the beam

element, [tR] is given by

(R} = | tR o (€.13)
0 tr

C e e WO, s




in which

costa sinta 0
[tﬁl = -sints costs 0 (c.14)
0 0 1
with
t _tst

sin"g ouz/ L

t 0 t: 2 t: (2,172

L= [0+ qup)® + (uy)7) (€.15)

as shown in Figure C.2.
The element matrices and vectors in global coordinates are

[tR]T[tK][tR].[tR]T(tF}. and [tR]T(u), respectively, in which

SORRUBENL MR
The element stress increments are calculated by using the following

strain increment

6
ey ~I B uy + %— (tL-t-8%) (€.16)
=2 13 L
jra
The total element stresses are updated by using
(C.17)

teat ¢
T T T tEey

'
{
1]
|
I
Ty
)
}
)
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